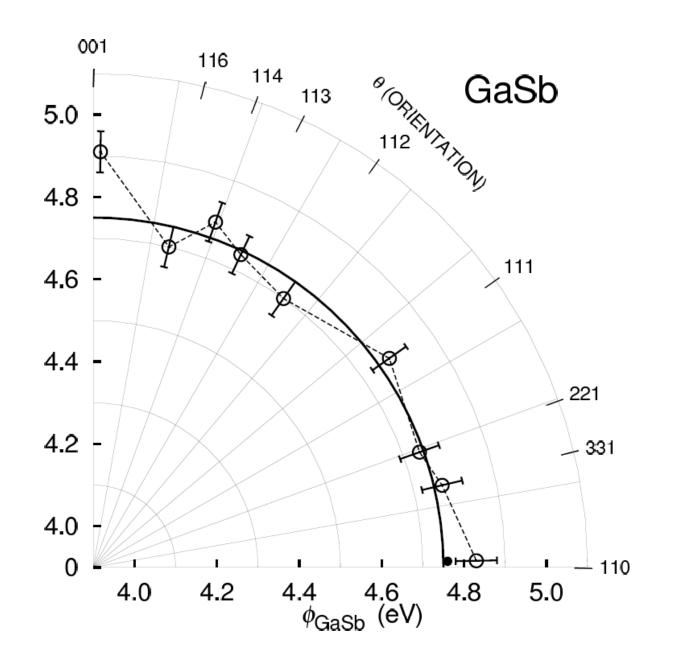
Photocathode Surface Roughness: A Systematic Study Benjamin L. Rickman, Louis Angeloni, and W. Andreas Schroeder University of Illinois at Chicago, Department of Physics (m/c 273), 845 W. Taylor Street, Chicago, IL 60607-7059

Introduction

- A detailed systematic study of the effect of surface roughness on the transverse emittance; specifically, the RMS transverse momentum, Δp_{T} , of electron pulses generated in a 'low-field' laser driven DC gun.
- Agreement between theoretical analyses and experiment confirms that the total Δp_{T} is dependent upon three factors:
- (i) The intrinsic RMS transverse momentum of the photocathode, Δp_{T0} - dependent upon $\Delta E = \hbar \omega - \phi$, band structure, etc.
- (ii) The RMS photocathode surface roughness, R_c - introduces local transverse surface fields that increase Δp_{T}
- (iii) The RMS slope of the photocathode surface, Δ_a - influences electron emission direction through \mathbf{p}_{τ} conservation


Approach

Two key components:

- 1. Solenoid scan determination of Δp_{τ} (roughness) with 'low-field' DC gun \Rightarrow 'Very rough' photocathode surface required
 - ... Roughness measurement by optical scattering techniques
- 2. Work function variation with crystal orientation (i.e., $\phi_{(iik)}$)
- \Rightarrow Either (i) a polycrystalline photocathode; $\phi_{RMS} \approx$ constant (i.e., crystal facet surface distribution independent of roughness parameters R_a and Δ_a)

polycrystalline Mo

Or (ii) single-crystal material with $\phi_{(iik)} \approx$ constant - GaSb(001)

Figure 1

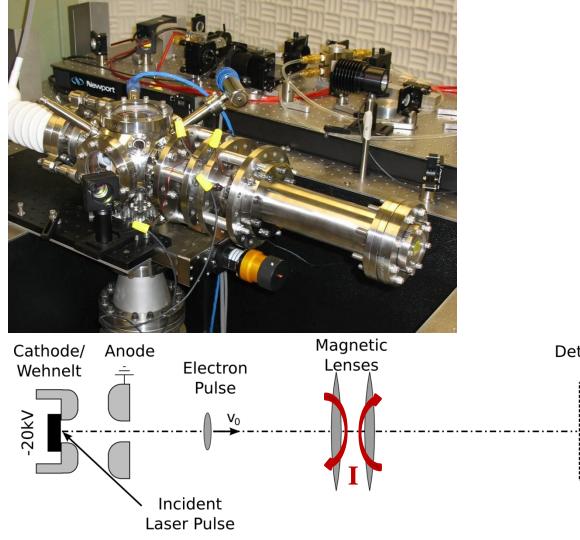
DFT-based thin-slab evaluation of $\phi_{(iik)}$ for GaSb (open circles with ± 0.05 eV uncertainty); $\hbar \omega = 4.75$ eV (solid line); literature value for $\phi_{(110)} = 4.76$ eV (black circle).

Methods

Optical measurement of R_a and Δ_a

- Definitions:
- RMS surface roughn

RMS slope, $\Delta_a = A$


... for h(x)

Optical scattering measurement:

(ii)
$$\Delta_q = \frac{1}{2} \sqrt{\frac{1}{I_0}} \int_{-1}^{1}$$

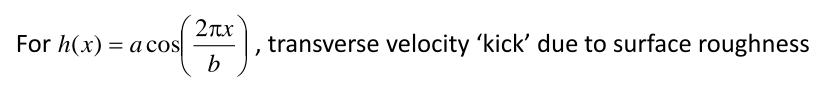
where $I_0 = \int_{-\pi/2}^{\pi/2} d\theta I(\theta)$ and $\theta_r = \frac{1}{I_0} \int_{-\pi/2}^{\pi/2} d\theta \theta I(\theta)$ \Rightarrow Measure $I(\theta)$ for $\theta_i = 0^\circ$ to extract Δ_{α}

Solenoid scan technique

Detector

[⁻⁻⁻]

- 2W, 250fs, 63MHz , diode-pumped Yb:KGW laser - ~4ps at 261nm ($\hbar \omega$ = 4.75eV)
- YAG scintillator optically coupled to CCD camera Beam size vs. magnetic coil (lens) current measured
- Analytical Gaussian (AG) pulse propagation model to extract Δp_{T}


hess,
$$R_q = \sqrt{\frac{1}{L} \int_0^L h^2(x) dx}$$

 $\sqrt{\frac{1}{L} \int_0^L \left(\frac{\partial h(x)}{\partial x}\right)^2 dx}$
 $h = a \cos\left(\frac{2\pi x}{b}\right); R_q = \frac{a}{\sqrt{2}} \text{ and } \Delta_q = \frac{\sqrt{2\pi a}}{b}$

– Light source: Red (λ = 635nm) diode laser beam – Photocathodes roughened using 5µm to 120-grit 'polishing' paper Brass and stainless steel 'standards' employed to test technique - Measurement of $R_{spec}(\theta_i)$ and $I(\theta)$ allows extraction of R_a and Δ_a :

(i) Specular reflection, $R_{spec.}(\theta_i) = R_0 \exp \left| -\left(\frac{4\pi R_q \cos \theta_i}{\gamma}\right)^2 \right|$ \Rightarrow Measure width of specular reflection peak at different incident angles θ_i to extract R_a

 $=\frac{1}{2}\sqrt{\frac{1}{I_0}\int_{-\pi/2}^{\pi/2}d\theta \left(\theta-\theta_r\right)^2 I(\theta)}$

Theory

Transverse velocity due to slope angle

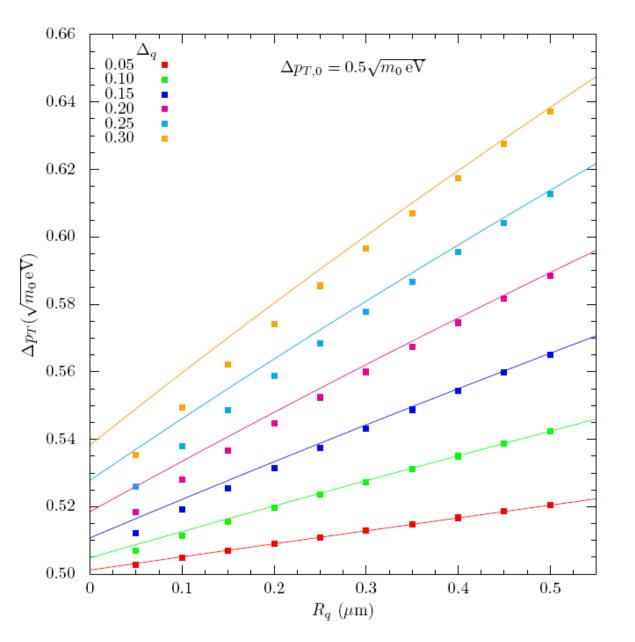
Transverse velocity due to roughness induced transverse field components

... E_0 is the acceleration field at the photocathode surface; $v_{x,0}$ and $v_{z,0}$ are the initial transverse and longitudinal electron velocity components at photocathode position x_0

$$\Delta p_{\rm T}$$
 can then be evaluated using $(\Delta p_T)^2 = \frac{\int_0^b dx}{\int_0^b dx}$

... where $N(\theta)$ is the angular distribution of emitted electrons for a smooth surface.

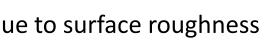
Simple analytical expressions result for the 'slope' and 'field' contributions to Δp_{T} in terms of R_{a} and Δ_{a} :


> $\Delta p_{T,slope} = m_0 v \Delta_q$ $\Delta p_{T, field} = \sqrt{\frac{\pi R_q \Delta_q q E_0 m_0}{2}}$

The total RMS transverse momentum is then given by

$$\Delta p_T = \sqrt{(\Delta p_{T,0})^2 + (\Delta p_{T,slope})^2 + (\Delta p_{T,slope})^2}$$
... where $\Delta p_{T,0}$ is the

--РТ,0 '


This analytical result is in good agreement with detailed electron trajectory simulations for rough photocathode surfaces:

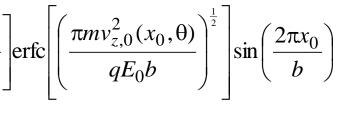
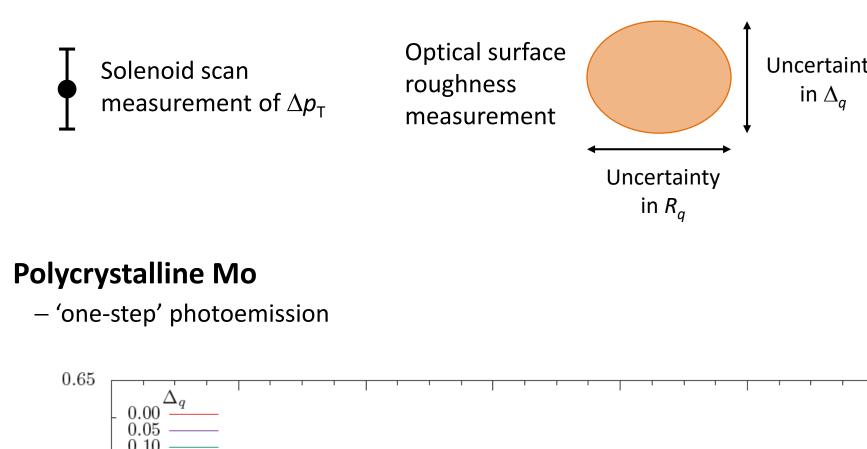
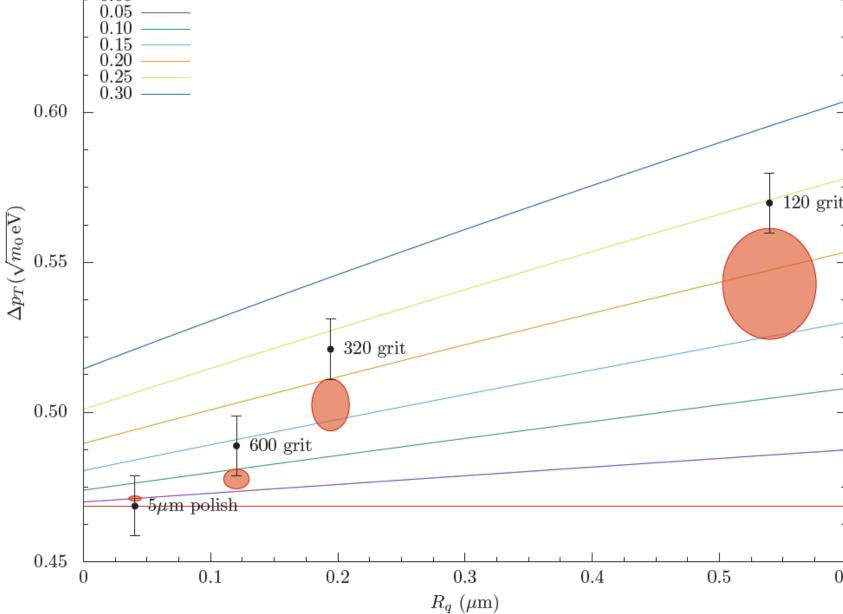


Figure 2

Comparison of analytic approximation (lines) with numeric electron trajectory simulations (points) when $E_0 = 0.5$ MV/m and $\Delta E = 0.25$ eV for a rough photocathode with an intrinsic RMS transverse momentum $\Delta p_{T,0} = 0.5 \ (m_0.eV)^{1/2}$.

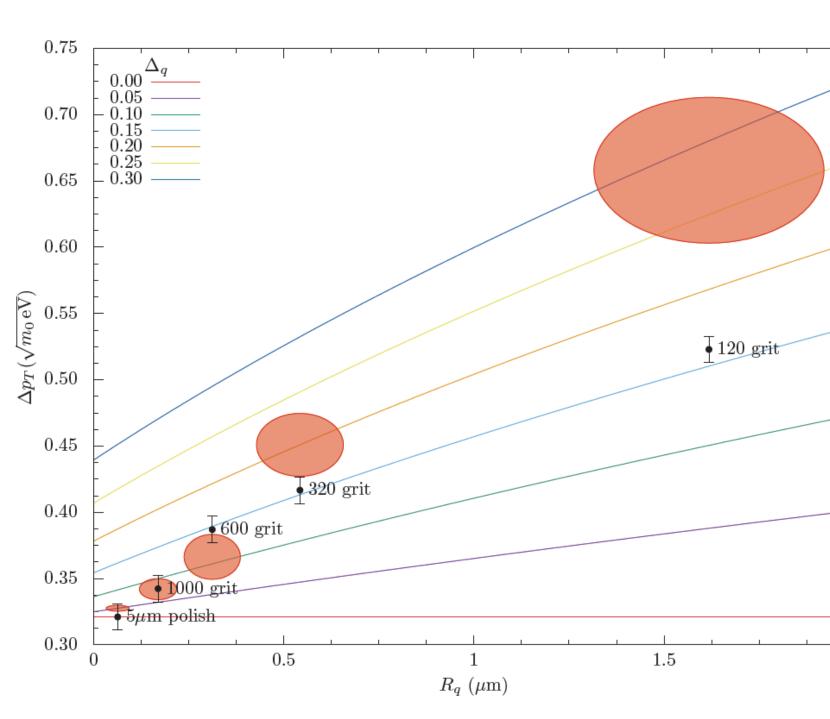
Results




$$\frac{\int_{-\pi/2}^{\pi/2} d\theta \left(m\dot{x}(x_0,\theta) \right)^2 N(\theta)}{\int_{0}^{b} dx_0 \int_{-\pi/2}^{\pi/2} d\theta N(\theta)}$$

- In limit
$$\frac{2\pi a}{b} \ll 1$$

 $\mathcal{O}_{T, field}$)


e intrinsic RMS transverse momentum of the flat photocathode

GaSb(001)

- 'three-step' photoemission (via higher CB state)

Results consistent with theoretical expectations for polycrystalline Mo [a 'hard' material] and at low values of *R_a* for GaSb(001) [a 'softer' material]

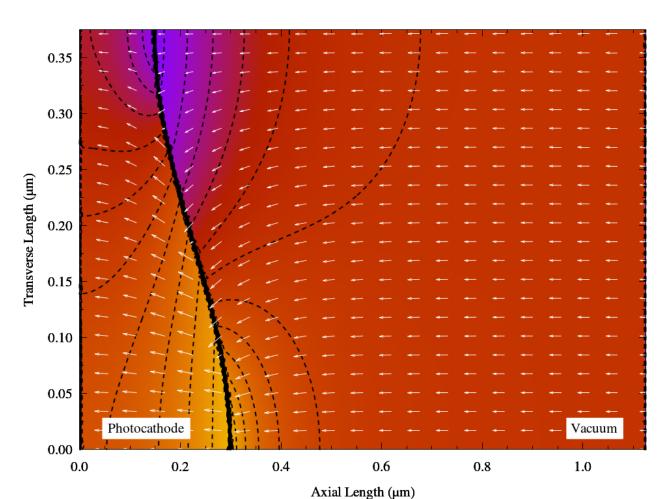
• GaSb(001) shows deviation from theoretical analysis when $R_a > 1 \mu m$

Conclusions

Uncertainty

in Δ_a

Emission properties of rough photocathodes are well described by


$$\Delta p_T = \sqrt{(\Delta p_{T,0})^2 + (\Delta p_{T,slope})^2 + (\Delta p_{T,field})^2}$$

where $\Delta p_{T,slope} = m_0 v \Delta_q$

and $\Delta p_{T, field} = \sqrt{\frac{\pi R_q \Delta_q q E_0 m_0}{\Gamma_q T_0 R_0 M_0}}$

... does **not** include $\Delta \phi$ effects on surface

- For hand-lapped photocathodes (5µm polish); $R_a \approx 50$ nm and $\Delta_a \approx 3^\circ$ \Rightarrow Minimal effect on Δp_{T} in 'low field' DC guns
 - \therefore Prior solenoid scan measurements of Δp_{T} validated
- Deviation from theory for GaSb(001) at high R_a is likely due to penetration of acceleration field into the dielectric photocathode:

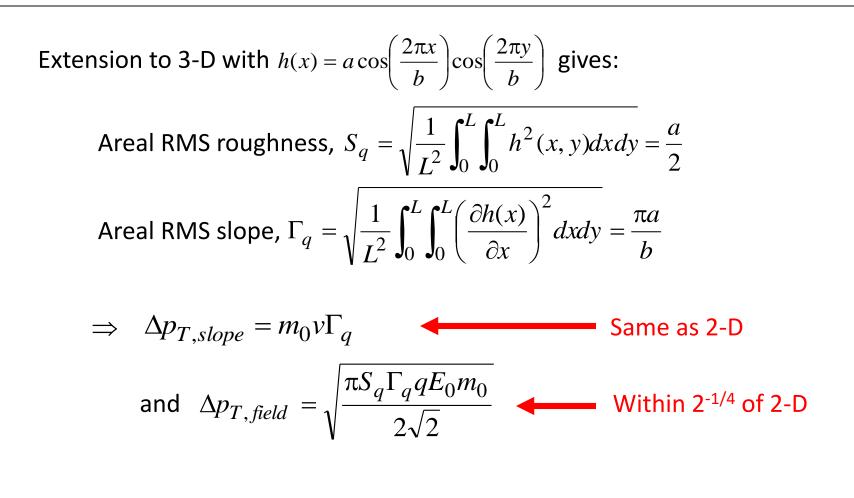
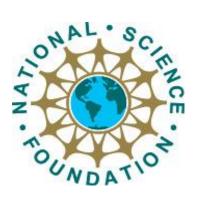


Figure 3


0.6

The electric displacement field **D** (vector arrows) at the interface of the vacuum with a dielectric (relative permittivity $\varepsilon_r = 15$, e.g. GaSb) photocathode surface with a sinusoidal roughness (75µm period, 0.75µm amplitude); equipotentials indicated by dashed lines.

Lemma

Acknowledgements

National Science Foundation PHYS-1535279