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Lecture 2: Training and fine filaments 

Degraded performance & Training 
• load lines and expected quench current 

of a magnet  

• causes of training - release of energy 
within the magnet  

• minimum propagating zones MPZ and 
minimum quench energy MQE  

Fine filaments 
• screening currents and the critical state 

model 

• flux jumping 

• magnetization and field errors 

• magnetization and ac loss  
quench initiation in LHC dipole 
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we expect the magnet to go resistive 
'quench' where the peak field load line 
crosses the critical current line ∗ 
usually back off from this extreme point 
and operate at   
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Degraded performance and 'training'  

 

 

• an early disappointment for magnet makers 
was the fact that magnets did not go straight to 
the expected quench point, as given by the 
intersection of the load line with the critical 
current line 

• instead the magnets went resistive - quenched 
- at much lower currents 

• after a quench, the stored energy of the 
magnet is dissipated in the magnet, raising its 
temperature way above critical 

  - you must wait for it to cool down and   
 then try again 

• the second try usually quenches at higher 
current and so on with the third 

  - known as training 
• after many training quenches a stable well 

constructed magnet (blue points) gets close to 
it's expected critical current, but a poorly 
constructed magnet (pink points) never gets 
there 
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MBSMS3.V1 and MBSMS3.V4
Training Curve @ 1.8K (including "de-training" test)
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Causes of training: 
(1) low specific heat 

• the specific heat of all substances 
falls with temperature  

• at 4.2K, it is ~2,000 times less than 
at room temperature 

• a given release of energy within 
the winding thus produce a 
temperature rise 2,000 times 
greater than at room temperature   

• the smallest energy release can 
therefore produce catastrophic 
effects 
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Causes of training: (2) Jc decreases with temperature  

 

 

but, by choosing to operate the magnet at * 
a current less than critical, we can allow a 
temperature margin 

at any given field, the critical current of 
NbTi falls almost linearly with temperature 

- so any temperature rise drives the   
 conductor into the resistive state 
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Causes of training: (3) conductor motion 
 

 
Conductors in a magnet are pushed by the electromagnetic 
forces.  Sometimes they move suddenly under this force - the 
magnet 'creaks' as the stress comes on.  A large fraction of 
the work done by the magnetic field in pushing the 
conductor is released as frictional heating 

B

F

J  

typical numbers for NbTi: 

 B = 5T    Jeng = 5 x 108 A.m-2       

 so if  δ = 10 µm      

 then Q = 2.5 x 104 J.m-3  

Starting from 4.2K   θfinal = 7.5K 

work done per unit length of conductor if it is pushed a 
distance δz  

W = F.δ z = B.I.δ z 

frictional heating per unit volume      

Q = B.J.δ z 

can you 
engineer a 
winding to 
better than 
10 µm? 
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Causes of training: (4) resin cracking 
 

 

Calculate the stain energy induced in resin by differential 
thermal contraction 
let:  σ = tensile stress     Y = Young’s modulus 
 ε = differential strain ν = Poisson’s ratio 
typically:   ε = (11.5 – 3) x 10-3       Y = 7 x 109 Pa     ν = 1/3  

      

We try to stop wire movement by impregnating the winding with epoxy resin.  Unfortunately the resin 
contracts much more than the metal, so it goes into tension.  Furthermore, almost all organic materials 
become brittle at low temperature.                brittleness + tension ⇒ cracking ⇒  energy release 
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Q1 = 2.5 x 105 J.m-3     θfinal = 16K 

Q3 = 2.3 x 106 J.m-3 θfinal = 28K 

uniaxial 
strain 

triaxial 
strain 

an unknown, but large, fraction of this stored energy will be released as heat during a crack 

Interesting fact:  magnets impregnated with paraffin wax show almost no training although the 
wax is full of cracks after cooldown.   
Presumably the wax breaks at low σ before it has had chance to store up any strain energy 
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How to reduce training? 

• make the winding fit together exactly to reduce movement of conductors under field forces 

• pre-compress the winding to reduce movement under field forces 

• if using resin, minimize the volume and choose a crack resistant type 

• match thermal contractions, eg fill epoxy with mineral or glass fibre 

• impregnate with wax - but poor mechanical properties 

• most accelerator magnets are insulated using a Kapton film with a very thin adhesive coating 

1) Reduce the disturbances occurring in the magnet winding 

2) Make the conductor able to withstand disturbances without quenching 

• increase the temperature margin 
  - operate at lower current 
  - higher critical temperature - HTS? 

• increase the cooling 

• increase the specific heat 

most of 2) may be characterized by a 
single number 

Minimum Quench Energy MQE 
= energy input at a point which is just 
enough to trigger a quench 
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in superconducting magnets temperature 
rise may be caused by 
 - sudden internal energy release 
 - ac losses 
 - poor joints  
 - etc, etc (lectures 2 and 3) 

Temperature margin 
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• backing off the operating current can also 
be viewed in terms of temperature 
• for safe operation we open up a 

temperature margin 



Martin Wilson Lecture 2 slide11 Superconducting Accelerators:  Cockroft Institute June 2006 

Quench initiation by a disturbance 
 

 

• CERN picture of the internal 
voltage in an LHC dipole 
just before a quench 

• note the initiating spike - 
conductor motion? 

• after the spike, conductor 
goes resistive, then it almost 
recovers 

• but then goes on to a full 
quench 

• can we design conductors to 
encourage that recovery and 
avoid the quench? 
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Minimum propagating zone MPZ 
 

 

• think of a conductor where a short section has been 
heated, so that it is resistive 

•  if heat is conducted out of the resistive zone faster 
than it is generated, the zone will shrink - vice versa 
it will grow. 

• the boundary between these two conditions is called 
the minimum propagating zone  MPZ 

• for best stability make MPZ as large as possible  

where: k = thermal conductivity ρ = resistivity    A = cross sectional area of conductor  
 h = heat transfer coefficient to coolant – if there is any in contact 
 P = cooled perimeter of conductor  
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the balance point may be found by equating  heat generation to heat removed.  
Very approximately, we have: 

l 
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θo 
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Energy to set up MPZ is called the Minimum Quench Energy  MQE 
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How to make a large MPZ and MQE 
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Large MPZ ⇒ large MQE ⇒ less training 
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• make thermal conductivity k large 

• make resistivity  ρ small 

• make heat transfer term  hP/A  large  

• NbTi has  high ρ and low k 

• copper has low ρ and high k 

• mix copper and NbTi in a filamentary composite 
wire 

• make NbTi in fine filaments for intimate mixing 

• maximum diameter of filaments ~ 50µm 

• make the windings porous to liquid helium  
 - superfluid is best 

• fine filaments also eliminate flux jumping  
 (see later slides) 
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Measurement of MQE 

measure MQE by injecting heat pulses 
into a single wire of the cable 

good results when spaces in cable are 
filled with porous metal  
 - excellent heat transfer to the helium 
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Another cause of training: flux jumping 

• usual model is a superconducting slab  in a 
changing magnetic field By 

• assume it's infinitely long in the z and y 
directions  -  simplifies to a 1 dim problem  

• dB/dt induces an electric field E which 
causes screening currents to flow at critical 
current density Jc 

• known as the critical state model or Bean 
model 

• in the 1 dim infinite slab geometry, 
Maxwell's equation says  

B 

J 

J 

x 

• when a superconductor is subjected to a 
changing magnetic field, screening currents 
are induced to flow 

• screening currents are in addition to the 
transport current, which comes from the 
power supply 

• they are like eddy currents but, because 
there is no resistance, they don't decay   

cozo
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x
B

µµ =−=
∂

∂

• so uniform Jc means a constant field 
gradient inside the superconductor  
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The flux penetration process 

B 

field increasing from zero 

field decreasing through zero 

plot field profile across the slab 

fully penetrated 
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The flux penetration process 

B 

field increasing from zero 

field decreasing through zero 

plot field profile across the slab 

fully penetrated 

Bean critical state model 

• current density everywhere is ±Jc or zero 

• change comes in from the outer surface  
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Flux penetration from another viewpoint 

superconductor vacuum 

Think of the screening currents, in terms of a gradient in fluxoid density within the superconductor.  
Pressure from the increasing external field pushes the fluxoids against the pinning force, and causes 
them to penetrate, with a characteristic gradient in fluxoid density  

At a certain level of field, the gradient of 
fluxoid density becomes unstable and 
collapses  
 – a flux jump 
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Flux jumping: why it happens 

It arises because:- 

magnetic field induces screening currents, flowing at 
critical density Jc 

Unstable behaviour is shown by all type 2 and HT superconductors when subjected to a magnetic 
field 

B 

B 

* reduction in screening currents allows flux 
to move into the superconductor 

flux motion dissipates energy 

thermal diffusivity in superconductors is low, so 
energy dissipation causes local temperature rise 

critical current density falls with increasing 
temperature 

go to * 

∆Q 

∆θ ∆φ 

  
Jc 

Cure flux jumping by making superconductor in the 
form of fine filaments – weakens ∆Jc ⇒ ∆φ ⇒ ∆Q 
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Flux jumping: the numbers for NbTi 

typical figures for NbTi at 4.2K and 1T 
Jc  critical current density = 7.5 x 10 9 Am-2   
γ   density = 6.2 x 10 3 kg.m3   

C  specific heat = 0.89 J.kg-1K-1   

 θ c critical temperature  = 9.0K 

Notes:  

• least stable at low field because Jc is highest 

• instability gets worse with decreasing temperature because Jc increases and C decreases 

• criterion gives the size at which filament is just stable against infinitely small disturbances
 - still sensitive to moderate disturbances, eg mechanical movement 

• better to go somewhat smaller than the limiting size 

•  in practice  50µm diameter seems to work OK 

Flux jumping is a solved problem 
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so    a =  33µm,   ie 66µm diameter filaments 

criterion for 
stability against 
flux jumping 
a = half width of 
filament  
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Magnetization of the Superconductor  

for cylindrical filaments the inner current boundary 
is roughly elliptical (controversial) 

when fully penetrated, the magnetization is 

fcc dJ
3π
2aJ

3π
4M ==

where a, df  = filament radius, diameter 
Note: M is here defined per unit volume of NbTi filament   
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When viewed from outside the 
sample, the persistent currents 
produce a magnetic moment.  

Problem for accelerators because 
it spoils the precise field shape 
We can define a magnetization 
(magnetic moment per unit volume) 

NB units of H  
 
for a fully penetrated slab 

B 

J J J 

B 
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Magnetization of NbTi 

The induced currents produce a magnetic moment and hence a magnetization  
     = magnetic moment per unit volume 

M 

Bext 
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Synchrotron injection 

synchrotron injects at 
low field, ramps to 
high field and then 
back down again 
 
note how quickly the 
magnetization changes 
when we start the ramp 
up 
 
so better to ramp up a 
little way, then stop to 
inject  

M 

B 

much better here! 

don't inject here! 
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Measurement of magnetization 
In field, the superconductor behaves just like a 
magnetic material.   We can plot the 
magnetization curve using a magnetometer.  It 
shows hysteresis - just like iron only in this case 
the magnetization is both diamagnetic and 
paramagnetic.   

B 

M 

Note the minor loops, where 
field and therefore screening 
currents are reversing 

The magnetometer, comprising 2 balanced search coils, is placed within the bore of a superconducting solenoid.   
These coils are connected in series opposition and the angle of small balancing coil is adjusted such that, with 
nothing in the coils, there is no signal at the integrator.  With a superconducting sample in one coil, the 
integrator measures magnetization when the solenoid field is swept up and down 
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Fine filaments 

fc dJ
3π
2M =recap 

We can reduce M by making the superconductor as 
fine filaments.  For ease of handling, an array of 
many filaments is embedded in a copper matrix 

Unfortunately, in changing fields, the 
filament are coupled together; 
screening currents go up the LHS 
filaments and return down the RHS 
filaments, crossing the copper at each 
end.    
In time these currents decay, but for 
wires ~ 100m long, the decay time is 
years! 
So the advantages of subdivision are 
lost  
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Twisting 

coupling may be reduced by twisting the wire magnetic flux diffuses along the twist pitch  
P  with a time constant  τ 
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P just like eddy 
currents  

where  ρt  is the transverse resistivity 
across the composite wire 
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where ρ is resistivity of the copper matrix 
and λf = filling factor of superconducting 
filaments in the wire section 
     extra magnetization due to coupling 

τ
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o

w
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where Mw is defined per unit volume of wire 
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Rate dependent magnetization 

τ
dt
dB

μ
2M
o

w =

recap: magnetization has 
two components: persistent 
current in the filaments 

fcff dJλ
3π
2M =

and coupling between the 
filaments  

first component depends on B 
the second on B` 
 
both defined per unit volume 
of wire  

M 

B 
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 AC Losses  

∫ ∫== MdHHdMW oo µµ

• When carrying dc currents below Ic superconductors have no 
loss but, in ac fields, all superconductors suffer losses. 

• They come about because flux linkages in the changing field 
produce electric field in the superconductor which drives the 
current density above Ic. 

• Coupling currents also cause losses by Ohmic heating in those 
places where they cross the copper matrix. 

• In all cases, we can think of the ac losses in terms of the work 
done by the applied magnetic field  

• The work done by 
magnetic field on a 
sample of magnetization 
M when field or 
magnetization changes  

E 

Ic 

M 

H 
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Magnetization and AC 
Losses  

∫ ∫== MdHHdMW oo µµ

This is the work done on the sample 
Strictly speaking, we can only say it is 
a heat dissipation if we integrate 
round a loop and come back to the 
same place 
 - otherwise the energy just might be 
stored  

M 

H 

Around a loop the red 
'crossover' sections are 
complicated, but usually 
approximate as straight 
vertical lines (dashed).  
So ac loss per cycle is 

∫∫ ≅= MdBMdHE oµ

losses in Joules per m3 and  Watts per m3 of 
superconductor  

In the (usual) situation where dH>>M, we may write 
the loss between two fields B1  and B2  as 

∫≅
2

1

B

B

MdBE

so the loss power is 
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Fine filaments for low magnetization  

• the finest filaments are 
made for accelerator 
magnets, mainly to keep 
the field errors at 
injection down to an 
acceptable level. 

• in synchrotrons, 
particularly fast ramping, 
fine filaments are also 
needed to keep the ac 
losses down    

• typical diameters are in 
the range 5 - 10µm.  Even 
smaller diameters would 
give lower magnetization, 
but at the cost of lower Jc 
and more difficult 
production.  
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Magnetization and field errors 

-300

-200

-100

0

100

200

300

0 1 2 3 4 5
Field B (T)

sk
ew

 q
ua

dr
up

ol
e 

er
ro

r

6 mT/sec
13 mT/seec
19 mT/sec

Magnetization is important in accelerators because it produces field error.  The effect is worst 
at injection because  - ∆B/B is greatest 
 - magnetization, ie ∆B is greatest at low field  

skew 
quadrupole 
error in 
Nb3Sn dipole 
which has 
exceptionally 
large 
coupling 
magnetization  
(University of 
Twente) 
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Concluding remarks 
a) training 
• expected performance of magnet determined by intersection of  load line and  critical surface 

• actual magnet performance is degraded and often shows ‘training’ 
 - caused by sudden releases of energy within the winding and low specific heat 

• mechanical energy  released by conductor motion or by cracking of resin  
 - minimize mechanical energy release by careful design 

• minimum quench energy MQE is the energy needed to create a minimum propagating zone MPZ            
 - large MPZ ⇒ large MQE ⇒ harder to quench the conductor  

• make large MQE by making superconductor as fine filaments embedded in a matrix of copper 

b) fine filaments:  
• magnetic fields induce persistent screening currents in superconductor 

• flux jumping happens when screening currents go unstable ⇒ quenches magnet  
  - avoid by fine filaments - solved problem 

• screening currents produce magnetization ⇒ field errors and ac losses  
  - reduce by fine filaments 

• filaments are coupled in changing fields  ⇒ increased magnetization ⇒ field errors and ac losses   
  - reduce by twisting 
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