Harut Avakian (JLab)

DPWG, JLab, 2015, Oct 22

Spin-Azimuthal asymmetries in SIDIS

- Defining the output (multiplicities, asymmetries,...)
- Examples from 6 GeV analysis
- Combination of different experiments
- Radiative corrections in 5D (x,y,z,P_T, ϕ)

MC and validation of the framework Summary

- Strong model and parametrization dependence observed already for 1D PDFs
- Positivity requirement may change significantly the PDF (need self consistent fits of polarized and unpolarized target data!!!)

SIDIS: partonic cross sections

Azimuthal moments in hadron production in SIDIS provide access to different structure functions and underlying transverse momentum dependent distribution and fragmentation functions.

beam polarization > target polarization

 $\sigma = F_{UU} + \frac{P_t F_{UL}^{\sin \phi}}{P_t} \sin 2\phi + \frac{P_b F_{LU}^{\sin \phi}}{P_t} \sin \phi \dots$ k_T k'**p**_T $P_T = p_T + z k_T$ $\int d^2 \vec{k}_T d^2 \vec{p}_T \delta^{(2)} (z \vec{k}_T + \vec{p}_T - \vec{P}_T)$ $F_{XY}^h(x,z,P_T,Q^2) \propto \sum H^q \times f^q(x,k_T,..) \otimes D^{q \to h}(z,p_T,..) + Y(Q^2,P_T) + \mathcal{O}(M/Q)$ corrections for the

region of large k⊤~Q

QCD fundamentals for TMD extraction

TMD factorization theorem separates a transversely differential cross section into a perturbatively calculable part and several well-defined universal factors

$$\begin{aligned} d\sigma_{\text{SIDIS}} &= \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(\alpha_{s}(\mu), \mu/Q) \otimes F_{f/H_{1}}(x, k_{1T}; \mu, \zeta_{1}) \otimes D_{H_{2}/f}(z, k_{2T}; \mu, \zeta_{2}) + Y_{\text{SIDIS}} \\ \text{TMDs may in general contain a mixture of both perturbative and non-perturbative contributions} \\ \text{Aybat, Collins, Qiu, Rogers 2012} \\ \text{Aybat, Collins, Qiu, Rogers 2012} \\ \text{Collins& Rogers 2015} \\ \tilde{F}_{H_{1}}(x, b_{T}; Q, Q^{2}) &= \tilde{F}_{H_{1}}(x, b_{*}; \mu_{b}, \mu_{b}^{2}) \exp\left\{-g_{1}(x, b_{T}; b_{\max}) - g_{K}(b_{T}; b_{\max}) \ln\left(\frac{Q}{Q_{0}}\right)\right\} \\ \text{parameterize} \\ &+ \ln\left(\frac{Q}{\mu_{b}}\right) \tilde{K}(b_{*}; \mu_{b}) + \int_{\mu_{b}}^{Q} \frac{d\mu'}{\mu'} \left[\gamma_{\text{PDF}}(\alpha_{s}(\mu'); 1) - \ln\left(\frac{Q}{\mu'}\right) \gamma_{K}(\alpha_{s}(\mu'))\right] \right\} \\ \text{perturbatively calculable} \\ P_{T} \sim \Lambda_{QCD} \ll Q, \quad \Lambda_{QCD} \ll P_{T} \ll Q, \quad P_{T} \sim Q, \text{ and } P_{T} > Q. \end{aligned}$$

Azimuthal moments in SIDIS

$$\sigma = \sigma_{UU} + \sigma_{UU}^{\cos\phi} \cos\phi + S_T \sigma_{UT}^{\sin\phi_S} \sin\phi_S + \dots$$

Due to radiative corrections, $\,\varphi\text{-dependence}$ of x-section will get more contributions

$$\sigma_{XY}^h(x,z,P_T) \to \sigma_{XY}^{B,h}(x,z,P_T) \times R(x,z,P_T,\phi_h) + \sigma_{XY}^{R,h}(\dots).$$

using a simple approximation

$$R(x, z, P_T, \phi) = f_{XY}(x, z, P_T) * (1 + a_{XY} * \cos\phi + \dots)$$

we can get correction factors to moments (ex. for RC for $\sigma_{UT}^{\cos\phi}$ we can get new moments

In reality contributions will me more complicated

Due to radiative corrections, ϕ -dependence of x-section will get more contributions

- Some moments will modify
- New moments may appear, which were suppressed before in the x-section

CLAS12 A_{UT} with transverse proton target

Extraction of 3D PDFs

Microscopic bins (N. Harrison,e1f-set)

fixed bin in ϕ ,x,Q²)

Microscopic bins (N. Harrison,e1f-set)

Precision studies of azimuthal distributions require

- good description of data by MC(resolutions, kinematic distributions...)
- Microscopic binning to minimize edge effects, typically getting out of control

Output tables

e1f (N.Harrison) tables with mutiplicities fitted by $A_0 + A_1 \cos \phi + A_2 \cos 2\phi$

 $\begin{array}{l} bin \# <\!\!x\!\!> <\!\!Q^{A}\!\!2\!\!> <\!\!z\!\!> <\!\!P_{T}^{2}\!\!> <\!\!y\!\!> A_{0} \quad \Delta A_{0} \quad A_{1} \quad \Delta A_{1} \quad A_{2} \quad \Delta A_{2} \quad A_{0(RC)} \quad \Delta A_{0(RC)} \quad A_{1(RC)} \quad \Delta A_{1(RC)} \quad A_{1(RC)} \quad A_{2(RC)} \quad \Delta A_{2(RC)} \quad \Delta A_{2(RC)} \quad \Delta A_{2(RC)} \quad \Delta A_{1(RC)} \quad \Delta A_{1(RC)} \quad A_{2(RC)} \quad \Delta A_{2(RC)} \quad \Delta$

1331 lines for pi+/ 1134 lines for pi- (~150Kb)

eg1dvcs (S. Koirala) tables with asymmetries ALU, AUL, ALL

Index F PhBinAv	-lav Q2N /g MxA	um Q2BinA vg Yy	vg Avg	XbNum EeAvo	XbBin I	Avg DpAvg	ZzNum C	ı ZzBin)iAvg	Avg Alu	PtNum PtBi AluErro	nAvg or	PhNum
Aul	AulEr	ror All	Â	llError	•	1 0		0				
63 0 0 0.138502	1.14772 -0.00956366	0 0.13559 0.0328709	91 0	0.349046	5	0.886265	2	77.6354	1.7382	0.763591	0.420486	0.842163
0.0450115	0.292196 1 14337	0.23585	0.345479	0 347242	5	0 888113	з	104 958	1 71881	0 757405	0 430883	0 835993
0.138236	0.0494798	0.0269866	0 291505	0.547242	5	0.000110	0	104.000	1.7 1001	0.757405	0.400000	0.000000
65 0 0	1.14175	0 0.13559	97 0	0.349518	5	0.887756	4	137.776	1.7291	0.759641	0.427246	0.838135
0.138388 0.380788	0.00275549 0.256311	0.0276319 -0.172219	0.302168									
		20737 lin	es 65	Mb								

bin#	x	Q ²	У	w	Mx	φ	z	PT	λ	Λ	N(counts)	RC
1												
Ν												

Tables with acceptance corrected mutiplicities in 5D bins may serve as input for the framework

Input data for analysis framework

Differential input (SIDIS):

M. Aghasyan et al arXiv:1409.0487 (JHEP)

Higher twists in azimuthal distributions in SIDIS

Large cos modulations observed by EMC were reproduced in electroproduction of hadrons in SIDIS with unpolarized targets at COMPASS and HERMES

From 1D to 3D

COMPASS multi-dimensional bins

0.003 < x < 0.008 | 0.20 < z < 0.25 | $0.10 < p_T^h < 0.20 \text{ GeV}/c$ $0.20 < p_T^h < 0.30 \text{ GeV}/c$ $0.008 \le x \le 0.013$ 0.25 < z < 0.30 $0.30 \le z \le 0.35$ $0.30 \le p_T^h \le 0.40 \text{ GeV}/c$ $0.013 \le x \le 0.020$ $0.40 < p_T^h < 0.50 \text{ GeV}/c$ 0.020 < x < 0.0320.35 < z < 0.400.40 < z < 0.50 $0.50 < p_T^h < 0.60 \text{ GeV/}c$ 0.032 < x < 0.050 $0.050 \le x < 0.080$ $0.50 \le z < 0.65$ $0.60 < p_T^h \le 0.75 \text{ GeV}/c$ $0.080 \le x \le 0.130$ $0.65 \le z \le 0.80$ $0.75 < p_T^h \le 0.90 \text{ GeV}/c$ 0.130 < x < 0.210 $0.80 \le z \le 1.00$ $0.90 < p_T^h < 1.30 \text{ GeV/}c$ $1.30 < p_T^h$ 0.210 < x < 1.000

- Observables extracted in 1D bin and 3D bins (with same average values in z,P_T) may be quite different.
- No consistency between different
 experiments

Understanding of $\cos\phi$ moment is crucial for understanding the theory

Finite phase space (including target, hadron mass) corrections

Target Fragmentation

Goals and requirements

The unambiguous interpretation of any SIDIS experiment (JLab in particular) in terms of leading twist transverse momentum distributions (TMDs) requires understanding of evolution properties and large k_T corrections(Y-term), control of various subleading 1/Q² corrections, radiative corrections, knowledge of involved transverse momentum dependent fragmentation functions, understanding of hadronic backgrounds not originating from current quarks.

- Leading twist QCD fundamentals (Y-term, matching at large P_T ..)
- higher twist effects
- TMD fragmentation functions
- target fragmentation correlations with current fragmentation
- Finite energies, finite phase space (target and hadron mass corrections,..)
- radiative corrections including the full list of structure functions

Summary

For precision studies of TMD(CFF) we need Theory:

- Extraction framework with controlled systematics (build in validation mechanism) to define requirements for the input
- Better understanding of higher twists (indispensable part of SIDIS analysis) is crucial for interpretation of SIDIS leading twist observables
- Better understanding of Radiative Corrections (in 5D)
- Understanding of kinematic corrections (finite phase space, target mass,...)
- Understanding of target fragmentation and correlations between hadrons in target and current fragmentation
- Understanding of relative scales, sizes and kinematic dependences of different contributions

Experiment:

Realistic MC description of measured distributions to minimize acceptance effects

Need a new MC generator "PYTHIA with spin-orbit correlations" to simulate azimuthal and spin correlations in final state hadronic distributions.

Proposal for topical collaboration: https://www.overleaf.com/2474182rxzqcg#/6457247/

Support slides....

Azimuthal moments from radiative effects are large and very sensitive to input structure functions (3 different SFs plotted)

Flavor dependent TMD Fragmentation functions

https://www.phy.anl.gov/nsac-Irp/Whitepapers/StudyOfFragmentationFunctionsInElectronPositronAnnihilation.pdf

 n^2

$$F_{UU} \propto \sum_{q} f_{1,q}(x,k_{\perp}) \otimes D_1^{q \to h}(z,p_{\perp})$$

Even simple approximations require an additional set of parameters

$$D_1^{q \to h, fav}(z, p_\perp) = D_1^{q \to h}(z) \times \frac{e^{-\frac{p_\perp}{\langle p_\perp^2, fav}(z) \rangle}}{\pi \langle p_\perp^2, fav}}$$

$$D_1^{q \to h, unf}(z, p_\perp) = D_1^{q \to h}(z) \times \frac{e^{-\frac{p_\perp^2}{\langle p_\perp^2, unf^{(z)} \rangle}}}{\pi \langle p_\perp^2, unf^{(z)} \rangle}$$

$$\langle p_{\perp,unf}^2(z) \rangle > \langle p_{\perp,fav}^2(z) \rangle$$

Measurements of flavor and spin dependence of transverse momentum dependent fragmentation functions will provide critical input to TMD extraction

Quark-gluon correlations: Models vs Lattice

•Significant longitudinal target SSA measured at JLab and HERMES may be related to HT and color forces •Large transverse spin asymmetries observed in inclusive pion production (Hall-A, HERMES)

Models and lattice agree on a large e/f1 -> large beam SSA

Multidimensional binning (e1f-SIDIS vs e1dvcs)

Polarized SSAs in DVCS

NO2

Higher Twists

http://arxiv.org/abs/arXiv:1506.07302

quark polarization	nucleon polarization	TMD PDFs	if $\mathcal{L} = 1$	integrated over \vec{k}_{\perp}	-			
U	U	$e(x,k_{\perp}), f^{\perp}(x,k_{\perp})$	$0, f_1(x,k_\perp)/x$	$e(x), \times$	-			
	Т	$e_T^\perp(x,k_\perp), \ f_T^{\perp 1}(x,k_\perp), \ f_T^{\perp 2}(x,k_\perp)$	0, 0, 0	x x x				
L	L	$e_L(x,k_\perp), g_L^\perp(x,k_\perp)$	$0, \ g_1(x,k_\perp)/x$	Х, Х	-			
	Т	$e_T(x,k_\perp), \ g_T'(x,k_\perp), \ g_T^\perp(x,k_\perp)$	0, 0, $g_{1T}(x,k_{\perp})/x$	\times $g_T(x)$				
Т	U	$h(x,k_{\perp})$	0	X	_	High	ner Twis	st PDFs
	$T(\parallel)$	$h_T^{\perp}(x,k_{\perp})$	$h_{1T}^{\perp}(x,k_{\perp})/x$	x	N/q	U	L	Т
	$T(\perp)$	$h_T(x,k_\perp)$	$h_{1T}(x,k_\perp)/x+k_\perp^2h_{1T}^\perp(x,k_\perp)/M^2x$	x	U	f^{\perp}	g^{\perp}	h, \mathbf{e}
	L	$h_L(x,k_\perp) \qquad \qquad k_\perp^2 h_{1L}^\perp(x,k_\perp)/M^2 x$			L	f_L^{\perp}	g_L^{\perp}	$\mathbf{h}_{\mathbf{L}}, e_{L}$
U	L	$f_L^{\perp}(x,k_{\perp})$	0	X	Т	f_T, f_T^{\perp}	$\mathbf{g_T}, g_T^{\perp}$	$h_T, e_T, h_T^{\perp}, e_T^{\perp}$
L	U	$g^{\perp}(x,k_{\perp})$	0	х	I			

L = 1, i.e. if we neglect the multiple gluon scattering and simply take a nucleon as an ideal gas system consisting of quarks and anti-quarks

Extracting the moments with rad corrections

Moments mix in experimental azimuthal distributions

Simplest rad. correction $R(x, z, \phi_h) = R_0(1 + r \cos \phi_h)$

Correction to normalization

 $\sigma_0(1 + \alpha \cos \phi_h) R_0(1 + r \cos \phi_h) \to \sigma_0 R_0(1 + \alpha r/2)$

Correction to SSA

 $\sigma_0(1+sS_T\sin\phi_S)R_0(1+r\cos\phi_h)\to\sigma_0R_0(1+sr/2S_T\sin(\phi_h-\phi_S)+sr/2S_T\sin(\phi_h+\phi_S))$

Correction to DSA

 $\sigma_0(1+g\lambda\Lambda+f\lambda\Lambda\cos\phi_h)R_0(1+r\cos\phi_h)\to\sigma_0R_0(1+(g+fr/2)\lambda\Lambda)$

Generate fake DSA moments (cos)

$$\sigma_0(1+g\lambda\Lambda)R_0(1+r\cos\phi_h)\to\sigma_0R_0gr\cos\phi_h$$

Simultaneous extraction of all moments is important also because of correlations!

t-dependence of \tilde{H}

HERMES AUT

