Coherent Vector Meson Photoproduction off Deuterium

Taya Chetry Nick Compton Ken Hicks ohio University

10/22/2015

OUTLINE

- Motivation
- A theoretical model
- PID Spectra
- Basic Cuts
- Global Plots: Data
- Acceptance
- Yield Extraction
- Preliminary Results
- ω photoproduction
- Conclusion

MOTIVATION

MOTIVATION

I. D. Overman, "Coherent photoproduction of rho mesons from deuterium," US Atomic Energy Commission SLAC-140, UC-34 (1971)

A THEORETICAL MODEL

Idea taken from: Applying Regge Theory : P. Landshoff http://www.indiana.edu/~jpac/Resources/Landshoff.pdf 5

A THEORETICAL MODEL

 $F_{yd \rightarrow \rho d} = single scattering term + double scattering term$ VMDReggeon + Pomeron
Deuteron form factors

$$\frac{d\sigma}{dt}(\gamma d \rightarrow \rho d)_{theory}$$

PID SPECTRA (DATA)

PID SPECTRA (MC)

t-SPECTRUM

t-value calculated using: $t = (P_{\gamma} - P_{\rho})^2$

Missing Mass Squared CUT

•Scale normalized by peak height

ZVERTEX CUT

.1

PADDLE CUT

- 48 paddles in total
- Bad paddles selected using accepted particle timing.

Particle	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6
π^+	23, 27		11 23, 31	23, 33, 35	23, 29	23
	≥ 43	≥ 45	≥ 40	≥ 46	≥ 46	≥ 45
π^{-}	23, 27		11, 15, 16, 23, 34-36	23,27,35	20,23,29	23
	≥ 41	≥ 41	≥ 41	≥ 43	≥ 43	≥ 42
d	23, 27	23	11, 22, 23	23	23	23
	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35

SUMMARY OF CUTS MADE

- Timing cuts made using momentum-dependent analysis
- $-40 \, cm < z_{vertex} < -10 \, cm$
- $-0.01 < MM^2 < 0.005 [GeV^2/c^4]$
- Theta cut: $\theta_{\pi^{-0},d} > 0.1[rad]$ and $\theta_{\pi^{+}} > 0.25[rad]$
- Fiducial cuts applied $\varphi = ae^{b\theta} + c$
- Paddle Cuts

Particle	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6
π^+	23, 27		11, 23, 31	23, 33, 35	23, 29	23
	≥ 43	≥ 45	≥ 40	≥ 46	≥ 46	≥ 45
π^{-}	23, 27		11, 15, 16, 23, 34-36	23, 27, 35	20, 23, 29	23
	≥ 41	≥ 41	≥ 41	≥ 43	≥ 43	≥ 42
d	23, 27	23	11, 22, 23	23	23	23
	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35

- Energy range: $1.0 < E_{\gamma} < 3.0 [GeV]$
- *t*-range: $-2.5 < t < -0.3 [GeV^2/c^2]$

ACCEPTANCE

GLOBAL SPECTRUM

YIELD EXTRACTION

DIFFERENTIAL C-SECTION: *preliminary*

DIFFERENTIAL C-SECTION(fits): *preliminary*

 $\frac{d\sigma}{dt}$

(*U***- PHOTOPRODUCTION**

(*U***- PHOTOPRODUCTION**

- The cross-section data provides sensitivity to the nucleonscattering data for higher |t|-values.
- Understanding this reaction channel will help understand its interference in the d* resonance

 $\gamma d \rightarrow \pi d^* \rightarrow \pi^+ \pi^- d$

- Omega photoproduction: interesting channel worth pursuing
- Next steps would include:
 - Study of |t|-slope dependence in MC
 - Study of systematic uncertainties
 - Comparison with a model

BACK-UPs

BACK-UP DIFFERENTIAL C-SECTION (comparison): *preliminary*

BACK-UP SOFT POMERON

 $T_{\text{SOFT}}(s,t) = iF(t)G_{\rho}(t) \left[A_{P_1}(\alpha'_{P_1}s)^{\alpha_{P_1}(t)-1}e^{-\frac{1}{2}i\pi(\alpha_{P_1}(t)-1)} + A_R(\alpha'_Rs)^{\alpha_R(t)-1}e^{-\frac{1}{2}i\pi(\alpha_R(t)-1)} \right]$

Formula from : ArXiv:hep-ph/9912312v1 12 Dec 1999 25

BACK-UP SOFT+HARD POMERON

