On a possible Interpretation of the 5q signal

Adam Szczepaniak Indiana University Jefferson Lab

Evidence of new hadrons

Role of reaction theory

The Pc and the Z's

before we can address the following question...

...we need to know how to interpret "peaks"

is it always a direct channel resonance ?

S-matrix principles: Crossing, Analyticity, Unitarity

$$A(s,t) = \sum_{l} A_{l}(s)P_{l}(z_{s})$$

Analyticity

$$A_{l}(s) = \lim_{\epsilon \to 0} A_{l}(s+i\epsilon)$$

bumps/peaks on the real axis (experiment) come from singularities in the complex domain.

$$I(s) = \int_{P.S.(s)} dt |A(t)|^2$$

$$A(s,t) = A(t)$$

$$A(s,t) = A(t)$$

$$A(t) = A(t)$$

$$A(t)$$

S

anatomy of the full, A(s,t) amplitude and its partial waves
an s-channel singularity out-of a t-channel pole

 dz_s

Zs

A(s,t) = A(t) pole (peak) in t $= b(s) + \sum_{l>0} (2l+1)b_l(s)P_l(z_s)$

t = t(s,z_s) kinematical relation

partial wave projection induces singularities in s (aka. left cuts)

S

suppose coherence between partial waves is broken

coherence between t-channel partial waves will be distorted if there are s-channel interactions. e.gin the I=0 wave

$$b(s) \to t(s) \left[\frac{1}{\pi} \int_{s_{tr}} ds' \rho(s') \frac{b(s')}{s'-s} \right]$$

$$b(s) \rightarrow b'(s) = b(s) + t(s) \left[\frac{1}{\pi} \int_{s_{tr}} ds' \rho(s') \frac{b(s')}{s'-s}\right]$$

can the s-channel interaction, (though de-coherence) generate narrow s-bands?

$$b'(s) - b(s) = t(s) \left[\frac{1}{\pi} \int_{s_{tr}} ds' \rho(s') \frac{b(s')}{s' - s} \right]$$

t(s) has a peak in s (e.g. J/psi + p -> J/psi + p resonate)

[...] has a peak as a function of s

$$\int dz_s \qquad = \qquad b(s) = \frac{1}{2} \int_{-1}^{1} dz_s \frac{\beta}{m_t^2 - t(s, z_s)}$$

b(s) has singularities for complex s

s. singularity of b(s) becomes a second sheet singularity of the integral (i.e. physical amplitude)
> very much like a resonance

Coleman-Norton theorem

t-channel resonance can produce s-channel "band" if:

all particles on-shell m_2 and m_1 collinear $v(m_2) > v(m_1)$

$$A(t) \to A(s,t) = [A(t) - b(s)] + b'(s)$$
$$= \sum_{l>0} (2l+1)b_l(s)P_l(z_s) + b'(s)$$

 $|A(t)|^2 \neq |A(s,t)|^2$

in the single channel case $|b'(s)|^2 = |b(s)|^2$

for s ~ s.
$$\left[\frac{1}{\pi} \int_{s_{tr}} ds' \rho(s') \frac{b(s')}{s'-s}\right] \sim 2i\rho(s)b(s)$$

$$b'(s) = b(s) + t(s)[\cdots] \rightarrow [1 + 2i\rho(s)t(s)]b(s)$$

= $S(s)b(s)$ S(s) = unitary
S-matrix
element

and projection does NOT change

$$I(s) = \int_{P.S.(s)} dt |A(t)|^2 = \sum_{l>0} |b_l(s)|^2 + |b(s)|^2$$

$$\rightarrow \sum_{l>0} |b_l(s)|^2 + |b'(s)|^2$$

Projection changes if interactions are inelastic

$$\begin{split} A_{\alpha}(s) &= b'_{\alpha}(s) + \sum_{l>0} \cdots \\ \alpha &= 1, 2, \cdots = (J/\psi p), (\chi_{c1}p) \cdots \qquad \mathsf{P_c} \\ &= (J/\psi \pi), (\bar{D}D^* + c.c) \cdots \mathsf{Z_c(3900)} \text{ in Y-> } \pi \pi J/\Psi \end{split}$$

suppose there is peak from projection of a t-channel resonance in channel 2 and inelastic interaction between 1 and 2

$$b_1'(s) \sim S_{1,2}b_2(s)$$

$$|S_{1,2}| < 1$$

The key to the XYZ phenomena are the many nearby channels

 $M_{\Lambda_b^0} = 5.6195, \ \mu_{K^-} = 0.4937, \ m_1 = m_{\chi_{c1}} = 3.510, \ m_2 = m_p = 0.93827$ $\lambda = m_{\Lambda^*} = 1.89 \ (\text{they take})$

Coleman-Norton requires

 $_{3.0}$ P_c (4380 or 4450)

 $1.89 < \lambda < 2.11 \,\text{GeV}$ $4.45 < \sqrt{s_{\text{peak}}} < 4.65 \,\text{GeV}$

Z_c(3900) Charged charmonium ?

 $\to \pi^+ Z_c^-(3900)$

 $\rightarrow \pi^+ \pi^- J/\psi$

17 18

coupling to DD*

14

15

 $M^{2}(\pi^{+}J/\psi)$ (GeV/c²)²

19 20

4

3

2

1

XYZ phenomena are seem to occur near inelastic thresholds

For the non-resonant [(t-channel) induced singularities] interpretation there needs to be significant coupling between channels

Specific predictions for "the other" Dalitz plot distribution e.g.

$$\Lambda_b \to K^- p \chi_{c1}$$

 $Y(4260) \to \bar{D}D^*$

 π

Origin of singularities (exchanges constrained by unitarity)

