Photoproduction of Excited η Resonances $\gamma p \to p \pi^+ \pi^- \eta \text{ at CLAS}$

Cathrina Sowa

Ruhr-Universität Bochum

Institut für Experimentalphysik I

- Supernumerous resonance with $J^{PC} = 0^{-+}$
- η(1295)
 - Seen in $\pi^- p$ scattering experiments
 - Seen by DM2 in $J/\psi \rightarrow \gamma \pi^- \pi^+ \eta$
 - No further observation
 - Interference with $f_1(1285)$
 - Artifact of f_1 ?
- η(1405)
 - Only seen in gluon rich processes like $\overline{p}p$ annihilations and radiative J/ψ decays
 - Not seen in photoproduction or $\gamma\gamma$ fusion
 - Decays to $K\overline{K}\pi$ and $\pi\pi\eta$
 - Glueball candidate
- η(1475)
 - Strong coupling to $K\overline{K}\pi$
 - Not yet seen in $\pi\pi\eta \rightarrow$ weak coupling

Event Selection

 $\gamma p \rightarrow p \pi^+ \pi^-(\eta)$

- g12 (≈ 60%)
- Photon energy 1.5 to 5.5 GeV
- Trigger Conditions: 3 charged tracks in 3 different sectors or 2 charged tracks in 2 different sectors and photon energy > 3.2 GeV

Require:

- 3 charged particles
 (2 positive, 1 negative)
- PID: p, π^+ , π^-
- η reconstruction via missing mass method
- Applied E_{γ^-} , momentum-correction
- $\rightarrow~\approx~200\cdot 10^{6}$ events

- Origin in target: r < 2 cm, -110 cm < z < -70 cm
- Timing: $\Delta t = t_{Tagger} t_{StartCounter}$, $|\Delta t| < 0.5 \text{ ns}$
- Minimal momentum: $p_p > 0.3 \, {\rm GeV/c}, \ p_{\pi^+,\pi^-} > 0.1 \, {\rm GeV/c}$
- Fiducial volume cut
- PID: $\beta_{calc} = \frac{p}{\sqrt{m_{PDG}^2 + p^2}}$ $\Rightarrow d = \beta_{calc} - \beta_{meas.} \Rightarrow |d| < 0.04$
- Cut on missing mass: 480 MeV/c² $< m_{miss} <$ 620 MeV/c²
- Track Efficiency
- $\rightarrow~pprox~18.6\,\cdot\,10^{\,6}$ events

Event-based Background Suppression

Assumption: Distribution of background events in a small cell of the phasespace is different compared to signal events.

- \rightarrow Event-by-event procedure:
- First step: find N nearest neighbours B of seed event A in phasespace
 - Define metric to calculate distances in phasespace
 - Choose N events with smallest distance to seed event

 Second step: fit invariant mass spectrum m(η) of nearest neighbours with appropriate functions for signal and background

- Metric contains:
 - Production angle η'
 E_γ

Event-based Background Suppression

 Third step: calculate signal to background ratio

• Fourth step: normalize S/B and assign it as probabilistic weight for each event

Unweighted 1-Q weighted Q weighted
 Benefit: No knowledge on the origin of background is needed!

Differential Cross Section of $\gamma p \rightarrow p \eta'$

Data Reconstruction and Analysis

00000000000000

Summary

7/15

Excited η states in $\gamma p \rightarrow p \pi^+ \pi^-(\eta)$

- Broad η peak
- Neutral kaon contribution
- Kinematic fit takes background events in as well as "real" η events
- ightarrow Q-factor method on missing mass in η region

Huge background contribution.

Weighted Missing η Mass Spectrum

Weighted $\pi^+\pi^-\eta$ Invariant Mass Spectrum

Weighted $\pi\pi\eta$ Invariant Mass Spectrum

Data Reconstruction and Analysis

Summary

$M_x(p)$ Vs. $M_X(p\pi^+\pi^-)$

Horizontal Band crossing under η' and $\eta(1295)/f_1(1285)$

Data Reconstruction and Analysis

Summary

$M_{x}(p)$ Vs. $M_{X}(p\pi^{+}\pi^{-})$

Selecting a band with signal events and two bands for sideband each half the width of the signalband

12/15

Data Reconstruction and Analysis

Summary

$M_X(p)$ for Signalband and Sidebands in bins of E_{γ}

Cathrina Sowa (RUB EPI)

Weighted $\pi\pi\eta$ Invariant Mass Spectrum

ion	Data Reconstruction and Analysis
	0000000000

Motiva

- Study of excited η mesons in $\gamma p \to p \pi^+ \pi^- \eta$
 - $\bullet~Sample$ of $18.6\cdot10^{6}$ reconstructed events
 - \bullet Successfully applied event-based background suppression to η' and missing η
 - Observed an enhancement at $\approx 1295\;\text{MeV/c}^2$ and at $\approx 1417\;\text{MeV/c}^2$
- Extracted $\gamma p
 ightarrow p \eta'$ differential cross section from g12 data
 - Good agreement with previous study, for Q-factor method on η^\prime
 - Small discrepancies for Q-factor method on $M_x(p\pi^+\pi^-)$ (under investigation)
- Next steps:
 - $\bullet\,$ Further investigation of the nature of the enhancement at 1290 MeV/c^2
 - Extract (upper limit) of $\eta(1405)$ production cross section

Differential Cross Section of $\gamma p \rightarrow p \eta'$

Differential cross section of $\gamma p \rightarrow p \eta'$:

CLAS g11 run (CLAS ,Phys.Rev. C80 (2009) 045213)

This work (g12 run)

Q-factor mehtod for η