Determination of the Polarization Observables $C_{x'}$, $C_{z'}$, and $P_{y'}$ for $\vec{\gamma} d \rightarrow K^0 \vec{\Lambda}(p)$ From g13 Data CLAS Collaboration Meeting

Colin Gleason

University of South Carolina

October 22, 2015

October 22, 2015

1 / 18

Overview

- Overview and g13 data set
- 2 Selection of $K^0\Lambda$
- 3 Extraction of $C_{x'}$, $C_{z'}$, and $P_{y'}$
 - Very preliminary results
 - Id fits
 - 2d fits
 - Maximum likelihood method (addition of $P_{y'}$)

(日) (周) (三) (三)

Motivation

Status as seen in —

- Understanding the N* spectrum is a major part of the research program at Jefferson Lab
- Recently, there has been significant work done on pseudo-scalar meson channels to understand the N* spectrum
- For KY, largest contribution is from the proton where progress has been made (γp → K⁺Λ N(1900)3/2+)
- Main goal of the g13 proposal: provide 7 observables $\left(\frac{d\sigma}{d\Omega}, P_y, \Sigma, O_{x'/z'}, C_{x'/z'}\right)$ on $\gamma n \rightarrow K^0 \Lambda$ (* * N(2080)3/2-)
- Current K⁰Λ studies in g13: Charles Taylor and Nick Compton are working on cross-sections, Derek Glazier working on linearly polarized photon data (Neil Hassal's PhD project)

	Status		3							
Particle J^P	overa	$\parallel \pi N$	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	Nρ	$\Delta \pi$
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^{-}$	****	****	****	***					***	***
$N(1535) 1/2^{-}$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***
$N(1675) 5/2^{-}$	****	****	***	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
N(1685) ??	*									
$N(1700) 3/2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	(***)	**	*	**
$N(1990) 7/2^+$	**	**	**				~	*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190) 7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^-$	****	****								
$N(2600) 11/2^{-1}$	***	***								
$N(2700) 13/2^+$	**	**								

< ロト < 同ト < ヨト < ヨト

g13 Experiment

- Data for experiment E06–103 (g13) was taken at Jefferson Lab in 2006–2007
- g13a: circularly-polarized, g13b: linearly-polarized
- Both used a 40-cm long unpolarized LD₂ target
- e⁻ beam energies of 2.0 and 2.6 GeV for g13a

Person	Channel	Observable
Tongtong Cao	$ec{\gamma} d ightarrow {\cal K}^+ ec{\Lambda} n)$	C_x, C_z, P_y
Nick Compton and Charles Taylor	$\gamma {m d} o {m K}^0 \Lambda({m p})$	$\frac{d\sigma}{d\Omega}$
Olga Cortes	$ec{\gamma} d ightarrow \omega({\it n})$ and $ec{\gamma} d ightarrow \omega({\it p})$	Σ,
Derek Glazier (Neil Hassal)	$ec{\gamma} {m d} o {m K}^0 ec{\Lambda}({m p})$	Σ
Paul Mattione	$\gamma d ightarrow {\cal K}^{st 0} \Lambda(p)$ and $\gamma d ightarrow {\cal K}^+ {\Sigma^st ^-}(p)$	$\frac{d\sigma}{d\Omega}$
Daria Sokhan	$ec{\gamma} d o p \pi^-(p)$	Σ
Nicholas Zachariou	$ec{\gamma} d o K^+ ec{\Lambda}$ n	Σ , O_x , O_z

Observables for $\vec{\gamma} d \rightarrow K^0 \vec{\Lambda}(p_s)$

$$\frac{d\sigma}{d\Omega}^{\pm} = \sigma_0 (1 \pm \alpha \cos \theta_{x'} P_{circ} \mathbf{C}_{x'} \pm \alpha \cos \theta_{z'} P_{circ} \mathbf{C}_{z'} + \alpha \mathbf{P}_{y'} \cos \theta_{y'})$$

3

イロト イ団ト イヨト イヨト

Selection of $K^0\Lambda$

Analysis Overview: $\vec{\gamma}d \rightarrow K^0 \vec{\Lambda}(p)$

•
$$K^0 \to \pi^+\pi^-$$
 and $\Lambda \to p\pi^-$

Select events which have 2 positive and 2 negative tracks

Particle Identification

Photon Selection

Particles were identified based on their velocity and momentum in CLAS ($\Delta\beta$ cut)

 $\Delta t = t_v - t_\gamma$ where t_v is the reconstructed event vertex time using the trajectory in CLAS of the fastest particle and t_{γ} is the time that the photon arrived at the event location イロト イポト イヨト イヨト

Colin Gleason (USC)

October 22, 2015 6 / 18

- 3

Selection of K^0 and Λ

Colin Gleason (USC)

э

Selection of K^0 and Λ

M(π⁺π⁻) vs. M(pπ⁻)

Colin Gleason (USC)

Selection of $K^0\Lambda$

Quasi-Free Event Selection: $\vec{\gamma}d \rightarrow K^0 \vec{\Lambda}(p_s)$

- The reaction of interest is $\gamma(n_s) \rightarrow K^0 \Lambda$
- QF events: the momentum of the final state proton should be small (consistent with the Fermi momentum of the *n_s*)
- For the reaction $\gamma d \to K^0 \Lambda X$, we calculate the missing momentum, \tilde{p}_X

$$ilde{
ho}_X = ilde{
ho}_\gamma + ilde{
ho}_d - ilde{
ho}_{
ho} - ilde{
ho}_{\pi^+} - ilde{
ho}_{\pi^-} - ilde{
ho}_{\pi^-}$$

Selection of the $K^0\Lambda(p_s)$ Final State

The $K^0\Lambda$ final state was identified using the missing mass (MM) technique Two MM's were calculated and used in cutting away large portion of background events

October 22, 2015

10 / 18

Colin Gleason (USC)

Beam Polarization

In order to determine the polarization observables, the polarization of the photon beam needs to be determined

 e⁻ polarization (P_e) measured using a Moller polarimeter in Hall B

Run Number	Average % e ⁻ Polarization
53164-53532 53538-53547 53550-53862 53998-54035	$\begin{array}{c} 84.97 {\pm} 0.28 \\ 80.60 {\pm} 0.18 \\ 78.47 {\pm} 0.18 \\ 84.11 {\pm} 1.11 \end{array}$

•
$$P_{circ} = \frac{E_{\gamma}(E_e + \frac{1}{3}E')}{E_e^2 + E'^2 - \frac{2}{3}E_eE'}P_e$$

• $E' = E_e - E_{\gamma}$

 Data in the table is from the work done by Tongtong Cao

Extraction of $C_{x'}$, $C_{z'}$, and $P_{y'}$

From the equation for the polarized cross section of $K\Lambda$ photoproduction, the experimental asymmetry, A, can be derived:

$$A = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{circ} C_{z'} \cos \theta_{z'}$$

- N⁺(N⁻) is the number of events with +(-) helicity
- $\alpha = 0.642 \pm 0.013$, is the self-analyzing power of Λ

(日) (同) (三) (三)

E_{γ} and $\cos\theta_{K}$ bins

<ロ> (日) (日) (日) (日) (日)

$C_{X'}$ Comparison for 1d, 2d, Maximum Likelihood

Colin Gleason (USC)

October 22, 2015 14 / 18

э

$C_{Z'}$ Comparison for 1d, 2d, Maximum Likelihood

Colin Gleason (USC)

October 22, 2015 15 / 18

э

Maximum Likelihood Estimates for $C_{x'}$, $C_{z'}$, $P_{y'}$

 $C_{x'}$ $C_{z'}$ $P_{y'}$

3

17 / 18

October 22, 2015

 $R = \sqrt{C_{x'}^2 + C_{z'}^2 + P_{y'}^2}$

R

Colin Gleason (USC)

Conclusions

- This work aims to provide polarization observables for KΛ photoproduction off the bound neutron
- Preliminary estimates of $C_{x'}$, $C_{z'}$ were extracted with 3 different methods, and $P_{y'}$ with the maximum likelihood method
- As of now, all three methods provide similar estimates
- The maximum likelihood method will be used to extract final results
- Work is in progress to understand background contributions

イロト 不得下 イヨト イヨト