Status of eg2 Single Pion Production Analysis

Error Analysis

Hyupwoo Lee, Steve Manly University of Rochester

CLAS nuclear physics working group meeting Oct, 21, 2015

eA for Neutrinos Project

High precision accelerator neutrino experiments are taking place in $0.5 \sim 2$ *GeV* region on nuclei. \rightarrow The statistical limit will be increased dramatically. \rightarrow Systematical error will play a significant role in neutrino world. Need to have decent model of nuclear effects in order to understand neutrino x-sections better.

- Our project is to measure pion production in eA on different nuclei and use data to tune parts of the neutrino MC(GENIE).
- We are using eg2c (5 *GeV* beam energy on D₂, C, Fe, Pb target) data to determine differential x-sections for charged pion production.

Overall

- Data : eg2c (D, C, Fe, and Pb target)
- MC : GENIE 2.8.0 patched with effective spectral function for target momentum. (hep/ph: 1405.0583)
- Detector simulation : GSIM, GPP
- Reconstruction : Uana
- Event selection : Filter, PiEG2
 - \rightarrow Single charged pion.
- Event-by-event Correction
 - Fiducial volume correction
 - Radiative Correction : Externals_all(eg1-dvcs)
- Background subtraction
- Unfolding : RooUnfold (arXiv:1105.1160)
- Final result
 - 1D differential cross-section (Q^2 , W, p_{π} , θ_{π})

Error List

- Statistical error
 - Data :~5%
 - Acceptance : $\sim 1\%$
- Systematic error Global
 - Total Q
 - Target properties : Area density
 - Stability
- Systematic error Local
 - MC : GENIE reweighting
 - Background subtraction
 - Radiative Correction
 - Unfolding
- Total Error
 - ~11% fractional error

4

Systematic Error - Global

Total Q – Gated Faraday cup liq_Mul:run 1.12 trig_file_bit1:run - < 1%1.115 2200 trig_file bit1 2000 1800 1.11 1600 1400 1.105 Target 1200 1000 800 1.1 - Liquid(D2) : ~1.0% 600 400 1.095 200 Fel Pb - Solid · 0 2~0 7% Fe₂ 41200 41400 41600 41800 42000 42200 1.09 41200 41600 42000 41400 41800 42200 - X. Zheng, Cryogenic Target Thickness Study for EG2 π multiplicity $Up \rightarrow Liquid$ target \rightarrow EG2 internal note, May 2003 $Down \rightarrow Solid target$ - H. Hakobyan et al., NIM A 592 (2008) 218 sol Mul:run 1.11 1.105 Stability 1.1 1.095 - Problem at first half part of iron target. 1.09 1.085 - We are finding absolute x-section. 1.08 Fe1 Fe₂ \rightarrow Excluded 1.075 41200 41400 41600 41800 42000 42200

GENIE Reweighting

- Use reweighting tool on 18 physics parameters in GENIE which related to eA production.
 - Cross section model, hadronization, and intranuclear rescattering.
 - GENIE knob name

"MFP_pi", "MFP_N", "FrCEx_pi", "FrElas_pi", "FrInel_pi", "FrAbs_pi", "FrPiProd_pi", "FrCEx_N", "FrElas_N", "FrInel_N", "FrAbs_N", "FrPiProd_N", "RDecBR1gamma", "RDecBR1eta", "AGKYxF1pi", "AGKYpT1pi", "AhtBYshape", "BhtBYshape"

- Tweak $\pm \sigma$ shifts for each parameter.
 - Go through the entire analysis chain and get the final x-section result bin-by-bin.
 - \rightarrow Differences with central value as its error.
 - Assume as they are independent.
 - \rightarrow Take square sum of them and use as total MC systematic error for each bin.
- AGKY hadronization model \rightarrow Major source of error.
- Gives ~8% average fractional error.

[Background Subtraction], [Radiative Correction]

Background Subtraction

- Use error matrix of 5 fit parameters for MC tuning

Make (100 universes)*(3 variables which is used for tuning)

 π angle is not used for tuning.

Fit results from Q2 used as CV.

- Average ~3.5% fractional error
- Radiative Correction
 - Use 2 different programs

External_all(eg1-dvcs) : Only use electron information to get the corrections.(2 variables)

Haprad2 : Include pion information (5 variables)

 \rightarrow Phys.Lett.B672:35-44,2009

- Take the difference between 2 as error.
- Gives ~1% average fractional error.

Unfolding – Bin migration

- RooUnfold
 - Bayesian method with 1 iteration.
- Basic Idea
 - Bin migrations are related to detector performance and mostly independent on targets
 - Apply response matrices from other targets on MC reconstructed sample \rightarrow Get unfolded sample and compare with MC truth sample.
 - For example... (\rightarrow Response matrix from Pb, MC recon and truth from D \rightarrow A set of error on D target.)
 - Take mean of errors which are taken 3 possible combinations.
- Gives ~2.5% average fractional error.

What else could be?

• Fiducial volume correction?

Assuming azimuthal symmetry, reduce a variable[azimuthal angle] in the function for fiducial cut for simplicity. \rightarrow Take the ratio inside fiducial region for fixed momentum and polar angle.

- This looks like the source of strange structure in pion angle distribution.
 - If there exist certain region where the fit function does not work well... \rightarrow It's more likely with polar angle due to the detector geometry \rightarrow Could give wrong corrections in that region.
- Error estimation?
 - Making a smooth fit function on final distribution and take the difference as error.

X-section pim

X-section pip

Error pim D

· —

Error pip C

Backup

GENIE Neutrino MC generator

- We had been looking a proper event generator for MC related studies and decided to use GENIE with its authors' support.
- GENIE
 - http://www.genie-mc.org/
 - Generates Events for Neutrino Interaction Experiments
 - "The goal of GENIE project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extend to all nuclear targets and neutrino flavors for E from MeV to PeV energy scales."

- GENIE is currently being used by T2K, MINOS, NOvA, MINERvA, ArgoNEUT, MicroBooNE, INO and others.

- Authors implemented eA mode and helping us a lot about using GENIE for our study. They are very interested in our output.

Event Selection : Electron ID and Related Cuts

- Id = 11 or (Id = 0 and charge = -1) for first particle in EVNT bank.
 - Survived events from all the other cuts with Id=0 have very small populations.
- *stat, ec, cc, sc, dc > 0.*
- EC
 - Fiducial cut : u > 40, v < 360, w < 390.
 - Sampling fraction : $E_{tot}/p > 0.156$.
 - $E_{in} > 60 MeV$, $E_{out} > 10 MeV$.
- CC nphe > 25 (2.5 photo electrons).
- Electron Fiducial Cut : Lorenzo Zana's codes and parameters for eg2 experiments.
- Vertex cut : Applied after beam offset correction.
 - Liquid (D₂) : $-31.8 < z < -28.4 \ cm$
 - Solid (C, Fe, Pb) : -25.7 < *z* < -23.7 *cm*
- y < 0.872 (p > 0.64 GeV) \leftarrow EC threshold

Event Selection : Pion ID and Other Cuts

- Charged Pion
 - Id = 211 or Id = -211
 - DC tracking $\chi^2 < 5$
 - $-|\Delta T| < 0.5$
 - Pion Fiducial Cut : Lorenzo Zana's codes and parameters for eg2 experiments.
- Variables and cuts (for acceptance correction)
 - Choose a leading charged pion for pion variables \rightarrow At least a charged pion required.
 - Q^2 : 1 $GeV^2 < Q^2 < 4 GeV^2$
 - $W: 1 \; GeV < W < 2.8 \; GeV$
 - π charge (*PiQ*)
 - π momentum (*PiMom*) : 0.3 GeV < *PiMom* < 2.5 GeV/2.0 GeV
 - π angle[w.r.t. beam direction] (*PiAng*) : 10 ° / 24 °< *PiAng* < 54 °

• Externals_all

- For RC calculation in the process of inclusive electron scattering.
- It is designed for eg1-dvcs and being used for eg1 and eg4.
- Need 2 leptonic variables with fixed beam energy : W, Q^2 .
- Calculate differential X-sections with/without QED radiative effects.
- Contribution from (Quasi-)elastic parts are excluded for our study.
 - $\leftarrow We select events with pion(s).$
- Being used as our RC calculation for this talk.

• Difficulties for theorists to use our results because of CLASoptimized fiducial cuts(Function of momentum and 2 angles.)

 \rightarrow Changing analysis to use cuts that are more easily modeled for comparison to theory.

 Main idea → Assuming azimuthal symmetry, reduce a variable [azimuthal angle] in the function for fiducial cut.

- Cut only on polar angle for fixed momentum(No cut for azimuthal angle).

- The cut should be reasonably greater than the lower limit of polar angle in fiducial volume.

Pseudo-Fiducial Volume : Define

- Fiducial volume[FV] \rightarrow A+C
- Pseudo-fiducial volume[PFV] → A+B
 !!! FV is not a sub-volume of PFV
- Cut on angle where FV to PFV ratio greater than 25%. $\frac{dA(\theta_C)}{dA(\theta_C) + dB(\theta_C)} = 0.25$

Pseudo-Fiducial Volume : Electron

Fiducial Volume Ratio : e

- Use Q^2 and W, instead of electron p_e and θ_e .
- Ratio $\rightarrow A/[A+B]$ at given Q² and W
- $\theta_e < 54$, W > 5.08-2.46*Q²

Pseudo-Fiducial Volume : π^{-}

Fiducial Volume Ratio : π^{-}

• Ratio \rightarrow A/[A+B] at given p_{π} and θ_{π} .

• $24 < \theta_{\pi} < 54$, $\theta_{\pi} > 18.5 + 6.28/(p_{\pi} + 0.029)$

Pseudo-Fiducial Volume : π^+

Fiducial Volume Ratio : π^+

• Ratio \rightarrow A/[A+B] at given p_{π} and θ_{π} .

• $10 < \theta_{\pi} < 54, \ \theta_{\pi} > 7.06 + 1.23/(p_{\pi} - 0.035)$

Accumulated Charge

Take all eg2c runs and accumulate all the charge which counted by faraday cup during DAQ-live time.

D₂: 14.7 mC C: 3.4 mC Fe: 6.0 mC Pb: 5.3 mC

Mass Number of Target

 $D_2: 2.014 \quad C: 12.011 \quad Fe: 55.845 \quad Pb: 207.2$

• Thickness of Target

D₂: 2 cm C: 0.1723 cm Fe: 0.040 cm Pb: 0.014 cm

• Mass Density of Target

Liquid D₂ : 0.162 g/cm^3

C: 1.747 g/cm³ Fe: 7.874 g/cm³ Pb: 11.34 g/cm³

GENIE eA Mode Processes

- "GENIE Physics and User Manual" from http://www.genie-mc.org/
- GENIE eA mode uses 3 event generators based on their cross section models.
- Quasi-Elastic Scattering (QEL)
 - Does not play a significant role in pion production.
- Baryon Resonance Production (RES)
 - Based on Rein-Sehgal model.
 - Covers only on "resonance-dominance" region where Ws(hadronic W) smaller than 1.7 GeV.
- Non-Resonance Inelastic Scattering (DIS)
 - Deep (and not-so-deep) inelastic scattering \rightarrow Not same as nuclear physics definition.
 - Based on Bodek and Yang model.
 - Covers resonance-dominance region(Ws < 1.7 GeV) also.

Mx-W [pi+, D]

- At both signal and sideband region, data and MC disagree.
- Scaling up for RES process is needed.

Mx-W [pi-, D]

• Scaling down for DIS(Ws>1.7) process is needed.

Background : Direct Tuning

- Direct tuning in signal region
 - Categorize MC with processes in terms of GENIE language rather than signal/background.
 - Take signal region only to get scales for each processes.
- Subcategories
 - Take meaningful subcategories from studying on 1D Mx and 2D Mx-W histogram.
 - 4-set from DIS. (hit nucleon/Ws=1.7 GeV)
 - 1 from resonance.
- Tuning
 - Fit with 2D Mx-Q² Data/MC histogram.
 - \rightarrow Q² is the only variable which is not affected by Fermi motion or FSI.
 - \rightarrow Gives very reasonable fit values.
 - \rightarrow Relatively works well with other variables.

New Category : Mx

Before Tuning : [D, pi-]

• In signal regoin.

After Tuning : [D, pi-]

• Fit from Mx-Q2 In signal regoin.

Fit Values

• Pi-, [D/C/Fe/Pb] target

Res	1.08874	1.21341	0.66593	0.58065
DisNW1	0.99280	0.87664	0.89308	0.76032
DisNW2	0.06997	0.14709	0.12888	0.09119
DisPW1	0.80850	1.16069	1.16090	0.78293
DisPW2	2.77155	1.19566	0.99967	0.73766

• Pi+, [D/C/Fe/Pb] target

Res	3.56438	3.64392	2.65127	1.63497
DisNW1	0.01000	1.04293	0.89291	1.72072
DisNW2	0.05800	0.44637	0.13629	0.51775
DisPW1	1.52276	1.22958	1.30197	1.04229
DisPW2	0.74849	0.88907	0.85659	0.68047

• W1 : Ws<1.7, W2 : Ws>1.7

Before Tuning : [C, pi-]

• In signal regoin.

After Tuning : [C, pi-]

• Fit from Mx-Q2 In signal regoin.

Error pim C

Error pim Fe

W : Fe target,π⁻

θ_{π} : Fe target, π^{-}

Error pim Pb

Error pip D

Error pip Fe

Error pip Pb

