CLAS12 Trigger

Valery Kubarovsky

Jefferson Lab

October 20, 2015

Plan

- Trigger detectors
- MC simulation
- Trigger analysis algorithms development
- Commissioning of the trigger firmware
- Slow control

CLAS12 Trigger System

- Electroproduction data
 - ep→e'(in CLAS)+X
 - Trigger only on the scattered electron
- Photoproduction data
 - ep→e'(in Forward tagger)+X (CLAS)
 - Trigger on coincidence between forward tagger and particles in CLAS
 - Trigger on particles in CLAS only
 - More complicated than electron trigger

Trigger detectors

- First stage:
 - HTCC
 - LTCC CTOP
 - TOF
 - Preshower calorimeter

HTCC

- EC calorimeter
- Later on Soler
 - DC
 - SVT
 - Central detectors (CTOF, Neutron Detector, SVT)
- CLAS6 trigger used only <u>LTCC</u> and <u>EC calorimeter in the electroproduction experiments
 </u>

FTOF

HTCC

- 8 PMTs per sector, in total 48 PMTs
- Must be calibrated
- Trigger: number of photoelecrons
- Possible binning for matching with other
 - detectors
 - Sector (6 bins)
 - Theta (4 bins)
 - Phi (2 bins)

Cherenkov clusters

• 40% of events have nhits/cluster >=2

Nhits	1	2	3	4
$\Delta\Theta$ degrees	7.5	7 2	2	2
$\Delta \phi$ degrees	30	5-20 30	2-5	2

Nick Markov

LTCC

- 36 PMTs per sector, in total 216 PMTs
- Must be calibrated
- Trigger: number of photoelecrons
- Possible binning
 - Sector (6 bins)
 - Theta (18 bins)
 - Phi (2 bins)

 CLAS6 trigger used one signal with low threshold (~0.2 phe) per sector

Preshower Calorimeter PCAL

- 196 channels in one sector
- Must be calibrated
- Search for clusters in (U,V,W) planes
- Calculate the cluster position and energy
- Match with EC clusters

EC Calorimeter

- 216 readout channels per sector
- Must be calibrated
- Search for clusters in (U,V,W) planes
- Calculate the cluster position and energy
- Match with PCAL clusters
- Calculate the energy sum PCAL+EC
- Could be matched with DC tracker in position and energy

What do we need?

- 1. MC simulation and analysis of the physics processes
- 2. Trigger Firmware
- 3. Trigger diagnostics
- 4. Slow control

Trigger Diagnostics Scheme

The firmware trigger decision will be verified against the decisions from FPGA simulation software and trigger simulation software

MC Simulation Requirements

- Simulate reaction ep→e'X (or dvcs or ...)
- Provide the analysis algorithms for all trigger detectors
 HTCC, LTCC, TOF, PCAL and EC calorimeter
- Determine the trigger cuts for all detectors
- Develop matching algorithms for final trigger decision
- Generate background as close to the future real data as possible. These data will be used for the firmware commissioning.
- Estimate the trigger rates for the nominal luminosity based on the background simulation

Trigger Diagnostics Software

- Has to simulate the trigger firmware performance
- Must analyze raw data from all trigger detectors in accordance with the trigger algorithms provided by detector, DAQ and trigger experts
- Must include the detector calibration and geometry data base
- Has to work with MC generated data and real data
- Has to generate different trigger decisions with completely independent cuts, including electroproduction, photoproduction, random triggers, prescales etc.

Play back

- Take EVIO as input and upload the event to the trigger crates with FADC boards
- The trigger firmware will report the trigger decision based on the preloaded values of FADCs
- The firmware trigger decision will be verified against the decisions from FPGA simulation software and trigger simulation software

Trigger Slow Control

- Provide online trigger rates for all trigger decisions
- Watch for the trigger rates during the experiments and provide alarms in case of problems
- Provide the time strip charts

Example: HPS Trigger

- Seed energy (E_{seed}>Eseed_min)
- Cluster energy (Emin<E₁,E₂<Emax)
- Number of hits in the cluster
- Energy Sum (min<E₁+E₂<max)
- Energy difference (|E₂-E₁|<max)
- Complanarity
- Energy slope (5.5*R+E_{min}>min)
- Cluster timing (|T_{seed}-Ti|<max)
- Cluster coincidence (|T_{top}-T_{bottom}|<max)

Single 0	Loose single cluster trigger
Single 1	Elastic events
Pair 0	Loose pair trigger
Pair 1	A' trigger

Test of the trigger performance

- Comparison between trigger firmware decision (SSP) and simulated trigger based on the FADC information for all types of triggers (s0,s1,p0,p1)
- Cluster verification
 - Energy of the cluster
 - Number of hits in the cluster
 - Hit's timing
- Trigger verification
 - Number of the events passed the trigger conditions
 - Test of each cut in the trigger
 - Cluster timing

Verification results

- Cluster finding efficiency 98.8%
- Single trigger efficiency 99.6%
- Pair trigger efficiency 99.7%

Trigger Rates

Night shift 2015-05-05

HPS trigger slow control

16 kHz Ungated Pair trigger Rate @ 60 nA

Trigger Tasks

- MC simulation and physics analysis
- Trigger detector algorithms DAQ, trigger and detector experts
- Trigger firmware
- Trigger diagnostics program
- Play back
- Slow control
- Spokespersons of the first CLAS12 experiments are encouraged to contact trigger group to collaborate in the trigger development.

God helps those who help themselves