Study of the Hyperon-Nucleon (YN) Interaction in Exclusive Λ Photoproduction off the Deuteron

Nicholas Zachariou

Systematic Studies on method for extracting observables

UNIVERSITY OF SOUTH CAROLINA

Why study the YN interaction?

The understanding of both *nucleon-nucleon (NN)* and *hyperon-nucleon (YN)* potentials is necessary in order to have a comprehensive picture of the strong interaction

- Understand the composition of neutron stars
- Understand hyper-nuclear structure and hyperon matter
- Extend *NN* to a more unified picture of the baryon-baryon interaction

How can we study the YN interaction?

- Extending NN to YN potentials using SU(3) symmetry free parameters remain
- Elastic YN Scattering
 poor database
- Study of Hypernuclei
 no direct access on bare YN interaction
- Final State Interactions (FSI) in Hyperon Production

simple target sufficient counting rates in modern accelerators model-dependent data interpretation

$$\vec{\gamma}d \to K^+ \vec{\Lambda}(n)$$

Experimentally Accessible Observables

Photon Energy

E_{beam}

E06-103 Experiment

- Liquid Deuterium Target (40 cm long)
- Tagged photon beam (linearly and circularly polarized)

g13b

- Current 10 nA
- Eight e-beam energies between 3.30 and 5.16 GeV
- ~2 mm collimator
- Two orientations of linear polarization (*Para & Perp*)
- Data obtained at photon energies between 1.1 and 2.3 GeV
- ~30 billion events collected $\overline{P}_{\gamma} = 75\%$

g13a

- Current 40 nA
- Two e-beam energies (1.99 and 2.66 GeV)

0

- Two orientation of circular polarization (+/- helicities)
- Data obtained at photon energies between 0.4 and 2.6 GeV
- ~20 billion events collected $\overline{P}_e = 80\% \rightarrow \overline{P}_{circ} = 32\% - 80\%$

Analysis of $\gamma d \to K^+ \Lambda(n)$

- Selection of 3-charged track events
- Identification of Λ
- Eliminate contributions from the QF mechanism and enhance rescattering contributions
- Reconstruct reaction

Acceptance Cases

- Case 1: Acceptance =1
- Case 2: Geometric acceptance
 - removed coil regions and detector holes
- Case 3: GSIM acceptance
 - determined from ratios of gsim-processed and generated events (protons, kaons, pios)

Binned Technique

Acceptance 1

Binned Technique

- 1D fits biased when acceptance is folded
- Bias varies based on true value of observables
- 2D fits biased

Likelihood Technique

$$L_i = c^{\parallel,\perp} (1 \pm P_i^{\parallel,\perp} A_i + \alpha \cos \theta_{yi} P_y), \text{ where }$$

$$A_{i} = \sum \cos 2\phi_{i} + \alpha \cos \theta_{xi} O_{x} \sin 2\phi_{i} + \alpha \cos \theta_{zi} O_{z} \sin 2\phi_{i} + \alpha \cos \theta_{yi} T \cos 2\phi.$$

$$\log L = b + \sum_{i=1}^{N^{||}} \log(1 + P_i^{||}A_i + \alpha \cos \theta_{yi}P_y)$$
$$+ \sum_{i=1}^{N^{\perp}} \log(1 - P_i^{\perp}A_i + \alpha \cos \theta_{yi}P_y).$$

Studies

- 1D binned technique
- Approximate Log Likelihood techniques
- Σ contributions only $N^{||}$

$$\log L = b + \sum_{i=1}^{N} \log(1 + P_i^{||} \Sigma \cos 2\phi_i) + \sum_{i=1}^{N} \log(1 - P_i^{\perp} \Sigma \cos 2\phi_i)$$

λτ⊥

Analytic solution

$$\hat{\Sigma} = \frac{\sum_{i=0}^{N^{||}} P_i^{||} \cos 2\phi_i - \sum_{i=0}^{N^{\perp}} P_i^{\perp} \cos 2\phi_i}{\sum_{i=0}^{N^{||}} (P_i^{||} \cos 2\phi_i)^2 + \sum_{i=0}^{N^{\perp}} (P_i^{\perp} \cos 2\phi_i)^2}$$

- Minuit minimization
- Full Log Likelihood
 - unstable (5 f.p. Σ , O_x , O_z , T, P_y)
 - extended (3 f.p. Σ , O_x , O_z)

Systematic studies

Σ	O _x	Oz	Τ	P_y
-0.75 — 0.75	+/- 1.0	0	0	0
-0.75 — 0.75	0	+/- 1.0	0	0
-0.45 — 0.45	0	0	+/- 1.0	0
-0.45 — 0.45	0	0	0	+/- 1.0
-0.35 — 0.35	+/- 0.5	+/- 0.5	+/- 0.5	+/- 0.5
-0.45 — 0.45	-0.4 — 0.4	-0.4 — 0.4	-0.4 — 0.4	-0.4 — 0.4

Studies of estimating $\boldsymbol{\Sigma}$

15

Studies

- Studies on F_R and P_R were also performed
 - conditions and true parameters from table

$F^{ }$	F^{\perp}	$P_{\gamma}^{ }$	P_{γ}^{\perp}	$ \Sigma $	$ \mathbf{O_x} $	$ \mathbf{O_z} $	$ \mathbf{T} $	$ \mathbf{P_y} $
60%	40%	1.0	1.0	< 0.45	< 0.4	< 0.4	< 0.4	<0.4
40%	60%	1.0	1.0	< 0.45	< 0.4	< 0.4	< 0.4	<0.4
60%	40%	1.0	1.0	< 0.45	< 0.4	< 0.4	0	0
50%	50%	0.75	0.75	< 0.45	< 0.4	< 0.4	< 0.4	<0.4
50%	50%	0.70	0.75	< 0.45	< 0.4	< 0.4	< 0.4	< 0.4
50%	50%	0.75	0.70	< 0.45	< 0.4	< 0.4	< 0.4	<0.4
50%	50%	0.70	0.75	< 0.45	< 0.4	< 0.4	< 0.4	< 0.4
60%	40%	0.70	0.75	< 0.45	< 0.4	< 0.4	< 0.4	<0.4
60%	40%	0.75	0.70	< 0.45	< 0.4	< 0.4	< 0.4	< 0.4

- Log-likelihood biased when F_R ≠ 1 and acceptance ≠ 1
 bias O(10⁻³)
- Bias can be corrected using F_R estimate from binned technique

0.95

1.1

ď

of Events Extraction Polarization Observables

- Maximum log-likelihood technique is pobust
- Allows the simultaneous extraction of 3 polarisation observables Σ , O_x , O_z

Summary

- Can be extended to get first estimates of P_y and T
- Produces reliable regults in low statistics
 - Statistical Uncertainties of log-likellymood Events

600 of Events

17

$\vec{\gamma}d \to K^+\vec{\Lambda}(n)$ FSI Results

Extra

Study of the Hyperon-Nucleon (YN) Interaction in Exclusive Λ Photoproduction off the Deuteron Systematic Studies of method for extracting observables

- •Goal: Extract single and double polarisation observables for FSI in $\gamma d \to K^+ \Lambda n$
- •Systematic studies of binned technique (fitting asymmetries)

Generated 10⁴ samples each with 10⁶ events

1D binned technique produces reliable results
2D binned techniques produces strongly biased results
Nicholas Zachariou

Study of the Hyperon-Nucleon (YN) Interaction in Exclusive Λ Photoproduction off the Deuteron

Systematic Studies of method for extracting observables

- Different log likelihood (LL) techniques ware developed based on various assumptions
 - Allows the simultaneous determination of single and double polarisation observables
 - LL technique has been extensively studied using generated data
 - Systematic bias due to acceptance assumptions is $O(10^{-3})$ (order of magnitude smaller than stat. uncertainty)

• LL method is more robust for low statistic bins compared to the binned techniques

Nicholas Zachariou

Studies of estimating Σ

23

Background Contributions

Systematic studies

Per estimate

- Randomly choose observable
- Calculate polarized cross section and generated events
- Obtain estimates

Background Contributions GSIM Momentum Corrections $\gamma p \rightarrow K^+ \Lambda$

Robust comparison between data and simulation

Data *p*-corrections established via kinematic fitting of $\gamma d \rightarrow pp\pi^-$

Corrections: *p*, *θ*, and *z* for all three particles

Background Contributions

ALL Signal Σ⁰ (FSI and QF) Σ^{*-} and Σ^{*0} Accidentals

Background can be polarized Fit MM $\phi, \cos \theta_x, \cos \theta_z, ...$ establish weight for each event

Background Contributions

Another Approach

$$\frac{d\sigma^T}{d\Omega} = \sigma^T [1 \mp \Sigma^T \cos 2\phi \mp \alpha \cos \theta_x O_x^T \sin 2\phi]$$

 $\mp \alpha \cos \theta_z O_z^T \sin 2\phi + \cdots],$

$\frac{d\sigma^S}{d\Omega} = \sigma^S [1 \mp \Sigma^S \cos 2\phi \mp \alpha \cos \theta_x O_x^S \sin 2\phi]$	$\frac{d\sigma^B}{d\Omega} = \sigma^B [1 \mp \Sigma^B \cos 2\phi \mp \alpha \cos \theta_x O_x^B \sin 2\phi]$
$\mp \alpha \cos \theta_z O_z^S \sin 2\phi + \cdots],$	$\mp \alpha \cos \theta_z O_z^B \sin 2\phi + \cdots]$, and

$$\frac{d\sigma^A}{d\Omega} = \sigma^A [1 \mp \Sigma^A \cos 2\phi \mp \alpha \cos \theta_x O_x^A \sin 2\phi \\ \mp \alpha \cos \theta_z O_z^A \sin 2\phi + \cdots],$$

$$\sigma^{T} = \sigma^{S} + \sigma^{B} + \sigma^{A}$$

$$\sigma^{T} \Sigma^{T} = \sigma^{S} \Sigma^{S} + \sigma^{B} \Sigma^{B}$$

$$\sigma^{T} O_{x}^{T} = \sigma^{S} O_{x}^{S} + \sigma^{B} O_{x}^{B}$$

$$\sigma^{T} O_{z}^{T} = \sigma^{S} O_{z}^{S} + \sigma^{B} O_{z}^{B}$$

200

Background Contributions

1.2 $mm(GeV/c^2)$

Systematic Studies under data bin 9

Binned Technique

 $\gamma p \to K^+ \Lambda$

- $O_x = 0.5$
- $O_z = -0.5$
- T = 0.5

 $P_{lin} = 1.0$

