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Why study the YN interaction? 

The understanding of both nucleon-nucleon (NN) and 
hyperon-nucleon (YN) potentials is necessary in order 
to have a comprehensive picture of the strong 
interaction 
• Understand the composition of neutron stars 

• Understand hyper-nuclear structure and hyperon matter 

• Extend NN to a more unified picture of the baryon-baryon 
interaction  
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How can we study the YN 
interaction?

• Extending NN to YN potentials using SU(3) symmetry 
 free parameters remain 

• Elastic YN Scattering 
 poor database 

• Study of Hypernuclei 
 no direct access on bare YN interaction 

• Final State Interactions (FSI) in Hyperon 
Production 

 simple target  
 sufficient counting rates in modern accelerators 
 model-dependent data interpretation
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Experimentally Accessible 
Observables
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E06-103 Experiment
• Liquid Deuterium Target (40 cm long) 
• Tagged photon beam (linearly and circularly polarized) 

• Current 10 nA 
• Eight e-beam energies between 3.30 

and 5.16 GeV 
• ~2 mm collimator 
• Two orientations of linear polarization 

(Para & Perp) 
• Data obtained at photon energies 

between 1.1 and 2.3 GeV 
• ~30 billion events collected 

• Current 40 nA 
• Two e-beam energies (1.99 and 2.66 

GeV) 
• Two orientation of circular polarization  

(+/-  helicities) 
• Data obtained at photon energies between 

0.4 and 2.6 GeV 
• ~20 billion events collected
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CHAPTER 4. CEBAF, CLAS, AND THE G13 EXPERIMENT 66

Figure 4.12 : The data and Monte-Carlo-simulated photon energy distributions produced from an
electron beam incident on a diamond radiator, after removing the 1/E⇥ bremsstrahlung energy-
dependence [89].

Figure 4.13 : Conical liquid-deuterium target used for the g13 experiment [92]. It was 40 cm long,
and 4 cm in diameter at its widest point. The beamline ran through the center of the target.

P e = 80% ! P circ = 32%� 80%
P � = 75%
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• Selection of 3-charged 
track events 

• Identification of Λ  

• Eliminate contributions 
from the QF mechanism 
and enhance 
rescattering contributions 

• Reconstruct reaction



Extracting Polarization Observables 
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• ⌃ = 0.6

• O
x

= 0.5

• O
z

= �0.5

• T = 0.5

• P
y

= 0.5

• P
lin

= 1.0

• Target proton is at rest and on shell

Asymmetries were calculated as indicate in the LHS of Eq. (3.9) and fitted with a function of the RHS of Eq. (3.9).
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with P
R

= 1.0, �
0

= 0.0, and F
R

and ⌃ left as free parameters. Figure 3.22 shows the one and two dimensional
asymmetries for generated (left) and gsim processed data (right). The upper plots are integrated over all ✓

i

angles
and the lower plots show the cos ✓

x

vs �. These results show that the acceptance has no effect in the calculation

Figure 3.22: Asymmetries A(�) for generated (left) and gsim processed data (right). The upper row indicated
the azimuthal asymmetries when we integrate over all ✓

i

and the lower row shows a two-dimensional asymmetry
between cos ✓

x

and �.

of the azimuthal asymmetry we we integrate over all ✓
i

. Need to do MANY more studies on these. I need to see
if I can extract the double polarization observables O

x

and O
z

as well as the effect on T on ⌃. I need to run the
simulation using a variety of different values of the observables. The negligible effect we see here might be from
the fact that the value of the target asymmetry is close to the azimuthal asymmetry and that O

x

= �O
z

. If the
integral c

✓x ⇡ c
✓z then the effect of these might cancel in the integral over all ✓

i

.

Study 2 (v0a)

For the second (simplified) study the following where used:

• �
0

= 1.0

• ⌃ = 0.8

• O
x

= �0.5

• O
z

= 0

• T = 0

• P
y

= 0

• P
lin

= 1.0

• Target proton is at rest and on shell

To study the acceptance effects on the determined observables we used four different cases of A(�, ✓
lab

). The three
cases are shown in Fig. 3.23 with the fourth one being the CLAS acceptance as incorporated in GSIM. The first
case, corresponds to ✓

lab

and � equal to 1. In this case, all generated data were used to determine ⌃. In the
second case, events in which all particles (kaon, proton and pion) fell within the detector fiducial region (� : ±3

�

around the coils and 14

� < ✓
lab

< 160

�). The third case, a Fourier series to represent the � and ✓
lab

acceptances
was used. The � was chosen from previous studies, and the ✓

lab

was chosen so that forward acceptance is higher
than backwards. In this case, the accept-reject method was used. Specifically, for each of the final-state particles
a random number between 0 and 1 was generated. The particle was kept if the random number was smaller than
the given function at the particle’s polar and azimuthal angles. Events in which all three particles survived were
used for the determination of ⌃. If my thinking is correct, the determination of the ✓

lab

and � acceptances will
result in the three A(✓0

i

) acceptances (see Eq. (3.5)). As a test I have reproduced the acceptances folded in the
cross section equation of the generated data. Figure 3.24 shows the � (upper row) and ✓ (lower row) for the three
acceptance cases. The red line corresponds to the PDF folded in the cross-section equation (same as in Fig. 3.23 for
comparison). The yellow histograms corresponds to the acceptance of protons only when only the � or ✓ acceptance
was folded in their distribution (1-particle acceptance). The green histogram shows the acceptance of protons only
when both the � AND ✓ acceptance was folded in their distribution (1-particle acceptance). Finally the gray
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Binned Technique
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Figure 3.25: cos ✓
i

acceptance of the generated data for the three acceptance cases.

In the case of 2-D fitting the function depends on the choice of bins. Specifically, for 2-D binning over � and
cos ✓

x

, or cos ✓
z

the fitted function is (4 parameters)
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In this 2-D fitting the photon polarization ratio P
R

and the average polarization ¯P is fixed and equal to 1.0.
Parameter 0 determined the photon-flux ration, and parameter 2 the observable ⌃, and parameter 3 the observable
O

x,z

, depending on the binning.

For 2-D binning over � and cos ✓
y

the fitted function is (5 parameters)
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The list below describes the values of the observables estimated by the analysis code (Extract_Asymm_gen.cc
– saved in a root file named Asymm_gen.root):

Sigma1DAcc1 ⌃ determined through 1-D fitting over � for Acceptance case 1

Sigma1DAcc2 ⌃ determined through 1-D fitting over � for Acceptance case 2

Sigma1DAcc3 ⌃ determined through 1-D fitting over � for Acceptance case 3

Sigma2DxAcc1 ⌃ determined through 2-D fitting over � and cos ✓
x

for Acceptance case 1

Sigma2DxAcc2 ⌃ determined through 2-D fitting over � and cos ✓
x

for Acceptance case 2

Sigma2DxAcc3 ⌃ determined through 2-D fitting over � and cos ✓
x

for Acceptance case 3

Ox2DAcc1 O
x

determined through 2-D fitting over � and cos ✓
x

for Acceptance case 1

Ox2DAcc2 O
x

determined through 2-D fitting over � and cos ✓
x

for Acceptance case 2

Ox2DAcc3 O
x

determined through 2-D fitting over � and cos ✓
x

for Acceptance case 3

Sigma2DzAcc1 ⌃ determined through 2-D fitting over � and cos ✓
z

for Acceptance case 1

Sigma2DzAcc2 ⌃ determined through 2-D fitting over � and cos ✓
z

for Acceptance case 2

Sigma2DzAcc3 ⌃ determined through 2-D fitting over � and cos ✓
z

for Acceptance case 3

Oz2DAcc1 O
z

determined through 2-D fitting over � and cos ✓
z

for Acceptance case 1

Oz2DAcc2 O
z

determined through 2-D fitting over � and cos ✓
z

for Acceptance case 2

Oz2DAcc3 O
z

determined through 2-D fitting over � and cos ✓
z

for Acceptance case 3

Sigma2DyAcc1 ⌃ determined through 2-D fitting over � and cos ✓
y

for Acceptance case 1

Sigma2DyAcc2 ⌃ determined through 2-D fitting over � and cos ✓
y

for Acceptance case 2

Sigma2DyAcc3 ⌃ determined through 2-D fitting over � and cos ✓
y

for Acceptance case 3

T2DAcc1 T determined through 2-D fitting over � and cos ✓
y

for Acceptance case 1
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Figure 3.25: cos ✓
i

acceptance of the generated data for the three acceptance cases.

In the case of 2-D fitting the function depends on the choice of bins. Specifically, for 2-D binning over � and
cos ✓

x

, or cos ✓
z

the fitted function is (4 parameters)
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In this 2-D fitting the photon polarization ratio P
R

and the average polarization ¯P is fixed and equal to 1.0.
Parameter 0 determined the photon-flux ration, and parameter 2 the observable ⌃, and parameter 3 the observable
O

x,z

, depending on the binning.
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The list below describes the values of the observables estimated by the analysis code (Extract_Asymm_gen.cc
– saved in a root file named Asymm_gen.root):

Sigma1DAcc1 ⌃ determined through 1-D fitting over � for Acceptance case 1

Sigma1DAcc2 ⌃ determined through 1-D fitting over � for Acceptance case 2

Sigma1DAcc3 ⌃ determined through 1-D fitting over � for Acceptance case 3

Sigma2DxAcc1 ⌃ determined through 2-D fitting over � and cos ✓
x

for Acceptance case 1

Sigma2DxAcc2 ⌃ determined through 2-D fitting over � and cos ✓
x

for Acceptance case 2

Sigma2DxAcc3 ⌃ determined through 2-D fitting over � and cos ✓
x

for Acceptance case 3

Ox2DAcc1 O
x

determined through 2-D fitting over � and cos ✓
x

for Acceptance case 1

Ox2DAcc2 O
x

determined through 2-D fitting over � and cos ✓
x

for Acceptance case 2

Ox2DAcc3 O
x

determined through 2-D fitting over � and cos ✓
x

for Acceptance case 3

Sigma2DzAcc1 ⌃ determined through 2-D fitting over � and cos ✓
z

for Acceptance case 1

Sigma2DzAcc2 ⌃ determined through 2-D fitting over � and cos ✓
z

for Acceptance case 2

Sigma2DzAcc3 ⌃ determined through 2-D fitting over � and cos ✓
z

for Acceptance case 3

Oz2DAcc1 O
z

determined through 2-D fitting over � and cos ✓
z

for Acceptance case 1

Oz2DAcc2 O
z

determined through 2-D fitting over � and cos ✓
z

for Acceptance case 2

Oz2DAcc3 O
z

determined through 2-D fitting over � and cos ✓
z

for Acceptance case 3

Sigma2DyAcc1 ⌃ determined through 2-D fitting over � and cos ✓
y

for Acceptance case 1

Sigma2DyAcc2 ⌃ determined through 2-D fitting over � and cos ✓
y

for Acceptance case 2

Sigma2DyAcc3 ⌃ determined through 2-D fitting over � and cos ✓
y

for Acceptance case 3

T2DAcc1 T determined through 2-D fitting over � and cos ✓
y

for Acceptance case 1
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Extracting Polarization Observables 
Acceptance Cases

• Case 1: Acceptance =1 
• Case 2: Geometric acceptance 

• removed  coil regions and detector holes 
• Case 3: GSIM acceptance 

• determined from ratios of gsim-processed 
and generated events (protons, kaons, 
pios) 
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Binned Technique

• ⌃ = 0.6

• O
x

= 0.5

• O
z

= �0.5

• T = 0.5

• P
y

= 0.5

• P
lin

= 1.0

• Target proton is at rest and on shell

Asymmetries were calculated as indicate in the LHS of Eq. (3.9) and fitted with a function of the RHS of Eq. (3.9).

A(�) =

N(�)

|| � N(�)

?
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||
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? =

F
R

� 1 � FRPR+1

PR+1

2

¯P⌃ cos[2(� � �
0

)]

F
R

+ 1 � FRPR�1
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2

¯P⌃ cos[2(� � �
0

)]

, (3.9)

with P
R

= 1.0, �
0

= 0.0, and F
R

and ⌃ left as free parameters. Figure 3.22 shows the one and two dimensional
asymmetries for generated (left) and gsim processed data (right). The upper plots are integrated over all ✓

i

angles
and the lower plots show the cos ✓

x

vs �. These results show that the acceptance has no effect in the calculation

Figure 3.22: Asymmetries A(�) for generated (left) and gsim processed data (right). The upper row indicated
the azimuthal asymmetries when we integrate over all ✓

i

and the lower row shows a two-dimensional asymmetry
between cos ✓

x

and �.

of the azimuthal asymmetry we we integrate over all ✓
i

. Need to do MANY more studies on these. I need to see
if I can extract the double polarization observables O

x

and O
z

as well as the effect on T on ⌃. I need to run the
simulation using a variety of different values of the observables. The negligible effect we see here might be from
the fact that the value of the target asymmetry is close to the azimuthal asymmetry and that O

x

= �O
z

. If the
integral c

✓x ⇡ c
✓z then the effect of these might cancel in the integral over all ✓

i

.

Study 2 (v0a)

For the second (simplified) study the following where used:

• �
0

= 1.0

• ⌃ = 0.8

• O
x

= �0.5

• O
z

= 0

• T = 0

• P
y

= 0

• P
lin

= 1.0

• Target proton is at rest and on shell

To study the acceptance effects on the determined observables we used four different cases of A(�, ✓
lab

). The three
cases are shown in Fig. 3.23 with the fourth one being the CLAS acceptance as incorporated in GSIM. The first
case, corresponds to ✓

lab

and � equal to 1. In this case, all generated data were used to determine ⌃. In the
second case, events in which all particles (kaon, proton and pion) fell within the detector fiducial region (� : ±3

�

around the coils and 14

� < ✓
lab

< 160

�). The third case, a Fourier series to represent the � and ✓
lab

acceptances
was used. The � was chosen from previous studies, and the ✓

lab

was chosen so that forward acceptance is higher
than backwards. In this case, the accept-reject method was used. Specifically, for each of the final-state particles
a random number between 0 and 1 was generated. The particle was kept if the random number was smaller than
the given function at the particle’s polar and azimuthal angles. Events in which all three particles survived were
used for the determination of ⌃. If my thinking is correct, the determination of the ✓

lab

and � acceptances will
result in the three A(✓0

i

) acceptances (see Eq. (3.5)). As a test I have reproduced the acceptances folded in the
cross section equation of the generated data. Figure 3.24 shows the � (upper row) and ✓ (lower row) for the three
acceptance cases. The red line corresponds to the PDF folded in the cross-section equation (same as in Fig. 3.23 for
comparison). The yellow histograms corresponds to the acceptance of protons only when only the � or ✓ acceptance
was folded in their distribution (1-particle acceptance). The green histogram shows the acceptance of protons only
when both the � AND ✓ acceptance was folded in their distribution (1-particle acceptance). Finally the gray
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Extracting Polarization Observables 
Binned Technique
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Figure 4.1: Beam asymmetry estimates obtained for two acceptances (yellow – no acceptance – and blue – accep-
tance as in Fig. 3.92, for three methods (1D fit, log-likelihood estimate, and log-likelihood using minimizer). The
second row indicates the uncertainties of the obtained estimates.

4.2 Second study
For the second study the maximum likelihood method was extended to include all observables that can be deter-
mined using a linearly polarized photon beam. For example, the likelihood function for one event is
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In Eq. (4.14) ↵ is the self-analyzing power of ⇤ and c in Eq. (4.13) is the normalization constant (equal to ↵ in
Eq. (4.2)). The log-likelihood function that is maximized using the minimizer routine is given by
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For this study the observable is determined using three approaches:

1. binned method/one dimensional fitting,

2. the approximate log-likelihood assuming only ⌃ observable (see Eq. (4.9)),

3. the log-likelihood minimization assuming only ⌃ observable (see Eq. (4.4)), and

4. the full log-likelihood (see Eq. (4.15)).

As a first step in this study only ⌃ and O
x

had non-zero values (equal to 0.8 and 0.5 respectively). Table II shows
the values of ⌃ obtained with the four approaches and Tabl III shows the other observables determined using
approach 4.
For studying any biases in these methods I obtained 9285 estimates of ⌃ each of which was determined using 2
million events (combined Para and Perp). Figure 4.2 shows these estimates determined using the four approaches
as shown in Tabl II. The yellow histograms shows the observable determined with no detector acceptance and the
blue with detector acceptance folded in. Figure 4.3 shows the estimates and uncertainties of the other observables
(O

x

, O
z

, T and P
y

) obtained using the full Maximum Likelihood function. The beam asymmetries appear to
be biased for the first three methods (binned fit, and likelihood functions assuming on ⌃) only in the case where
acceptance is folded in, and unbiased for the full log likelihood function. For the binned method, this is consistent

Binned Approximate Maximum
Method Max Likelihood Likelihood

Acceptance 1 0.80078±0.00070 0.80067±0.00069 0.80071±0.00069
Acceptance 2 0.80095±0.00276 0.79826±0.00274 0.80011±0.00274

Table I: Estimates of ⌃ using three approaches as described in the text
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Figure 4.1: Beam asymmetry estimates obtained for two acceptances (yellow – no acceptance – and blue – accep-
tance as in Fig. 3.92, for three methods (1D fit, log-likelihood estimate, and log-likelihood using minimizer). The
second row indicates the uncertainties of the obtained estimates.

4.2 Second study
For the second study the maximum likelihood method was extended to include all observables that can be deter-
mined using a linearly polarized photon beam. For example, the likelihood function for one event is
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In Eq. (4.14) ↵ is the self-analyzing power of ⇤ and c in Eq. (4.13) is the normalization constant (equal to ↵ in
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For this study the observable is determined using three approaches:

1. binned method/one dimensional fitting,

2. the approximate log-likelihood assuming only ⌃ observable (see Eq. (4.9)),

3. the log-likelihood minimization assuming only ⌃ observable (see Eq. (4.4)), and

4. the full log-likelihood (see Eq. (4.15)).

As a first step in this study only ⌃ and O
x

had non-zero values (equal to 0.8 and 0.5 respectively). Table II shows
the values of ⌃ obtained with the four approaches and Tabl III shows the other observables determined using
approach 4.
For studying any biases in these methods I obtained 9285 estimates of ⌃ each of which was determined using 2
million events (combined Para and Perp). Figure 4.2 shows these estimates determined using the four approaches
as shown in Tabl II. The yellow histograms shows the observable determined with no detector acceptance and the
blue with detector acceptance folded in. Figure 4.3 shows the estimates and uncertainties of the other observables
(O

x

, O
z

, T and P
y

) obtained using the full Maximum Likelihood function. The beam asymmetries appear to
be biased for the first three methods (binned fit, and likelihood functions assuming on ⌃) only in the case where
acceptance is folded in, and unbiased for the full log likelihood function. For the binned method, this is consistent

Binned Approximate Maximum
Method Max Likelihood Likelihood

Acceptance 1 0.80078±0.00070 0.80067±0.00069 0.80071±0.00069
Acceptance 2 0.80095±0.00276 0.79826±0.00274 0.80011±0.00274

Table I: Estimates of ⌃ using three approaches as described in the text
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Studies
• 1D binned technique 
• Approximate Log Likelihood techniques 

• Σ contributions only 

• Analytic solution 

• Minuit minimization 
• Full Log Likelihood 

• unstable (5 f.p.                               ) 
• extended (3 f.p.                   )

4 Log-Likelihood Fits
The studies in this section aim in understanding the effects of both acceptance and other polarization observables
(eg. O

x

, O
z

) on the determination of the beam asymmetry. The determination is done using a one dimensional
fits on �, as before, and a maximum likelihood method. The maximum likelihood method was initially studied by
Wei. A brief description is also provided here.
For each event (Para or Perp) the likelihood of occurring is given by

L = a||,?(1 ± P ||,?
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where a is the normalization constant
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and the log likelihood function
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The beam asymmetry is determined by determining the value of ⌃ at which the log likelihood is maximum, i.e.
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As an approximation one can use the first two terms of the Taylor expansion
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The maximum likelihood method also provides an estimate of the uncertainty. One can assume that for one
parameter, L becomes Gaussian for large N. Thus
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The second term in Eq. (4.10) is equal to zero, and the third term gives us an estimate of the parameter uncertainty
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From Eq. (4.10) and Eq. (4.11) one can see that the value of the uncertainty can be determined using the values
of ⌃ at which logL changes by 1

2

.

4.1 Initial study
An initial study was performed using generated data (2 million combined Para and Perp events) using the phase
space generator. For this initial study ⌃

true

= 0.8 and all other observables were set to zero. The acceptance shown
in Fig. 3.92 was folded in the data. The asymmetry was determined using the binned technique (30 bins, each 12

�

wide) and the maximum likelihood technique. For the maximum likelihood, two values were obtained; one using
the first two terms of the Taylor series as shown in Eq. (4.9) and one using a minimization routine in ROOT to find
the minimum of � logL (as shown in Eq. (4.4) with b set to zero). The uncertainty in the case where the taylor
series was employed was calculated using Eq. (4.11). In the minimization routine, the uncertainty was calculated
by locating the values of ⌃ at which logL changes by 1

2

. Table I shows one estimate determined for each approach
and for two acceptance cases (Acceptance = 1 and acceptance same as in Fig. 3.92).
For studying any biases in these methods I obtained 10025 estimates of ⌃ each of which was determined using 2
million events (combined Para and Perp). Figure 4.1 shows these estimates determined using the three approaches
(1D fit, log-likelihood estimation, and log-likelihood using the minimizer for obtaining the maximum likelihood).
The yellow histograms shows the observable determined with no detector acceptance and the blue with detector
acceptance folded in.
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From Eq. (4.10) and Eq. (4.11) one can see that the value of the uncertainty can be determined using the values
of ⌃ at which logL changes by 1
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.

4.1 Initial study
An initial study was performed using generated data (2 million combined Para and Perp events) using the phase
space generator. For this initial study ⌃

true

= 0.8 and all other observables were set to zero. The acceptance shown
in Fig. 3.92 was folded in the data. The asymmetry was determined using the binned technique (30 bins, each 12

�

wide) and the maximum likelihood technique. For the maximum likelihood, two values were obtained; one using
the first two terms of the Taylor series as shown in Eq. (4.9) and one using a minimization routine in ROOT to find
the minimum of � logL (as shown in Eq. (4.4) with b set to zero). The uncertainty in the case where the taylor
series was employed was calculated using Eq. (4.11). In the minimization routine, the uncertainty was calculated
by locating the values of ⌃ at which logL changes by 1

2

. Table I shows one estimate determined for each approach
and for two acceptance cases (Acceptance = 1 and acceptance same as in Fig. 3.92).
For studying any biases in these methods I obtained 10025 estimates of ⌃ each of which was determined using 2
million events (combined Para and Perp). Figure 4.1 shows these estimates determined using the three approaches
(1D fit, log-likelihood estimation, and log-likelihood using the minimizer for obtaining the maximum likelihood).
The yellow histograms shows the observable determined with no detector acceptance and the blue with detector
acceptance folded in.
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Systematic studies
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Studies of estimating ⌃
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Studies
• Studies on FR and PR were also performed  

• conditions and true parameters from table 

• Log-likelihood biased when              and acceptance 
• bias  

• Bias can be corrected using FR estimate from binned 
technique 

FR 6= 1

Summary

It is evident from this study the the maximal likelihood method 3 (log all)
produces reliable results with the smallest biases (when acceptance is folded
in). A general remark is that all methods produce comparable results with no
biases when the acceptance is equal to 1 (and with very small/negligible in most
cases biases in the case of acceptance 3). As observed in the previous study the
bias is primarily due to the T observable. In fact from the study presented in
this section the bias of all observes changes sign with the sign of T . For all the
cases studied here the maximum biases from the maximal likelihood method 3
observed are:

⌃ bias < 0.0026

O
x

bias < 0.004

O
z

bias < 0.002

Again, the bias observed using other methods are larger than this. These bi-
ases are at least an order of magnitude smaller than the expected statistical
uncertainty (see Sec. 4.7). The values quoted here are a little smaller from the
ones seen in Sec. 4.4 since the value of T there was much bigger. Quoting those
uncertainties should give us an upper limit of the systematic bias of this method.

4.6 Version 4a of Second study
The previous section studied the extraction of observables for the case of equal
photon fluxes (generated Para equal to generated Perp) and P?

�

= P ||
�

= P
�

=

1.0. Here, I investigate systematic effects of each method when the incident
photon fluxes (and this the generated events) are not the same and the photon
polarizations are not equal to one (and different). Table VII shows the list of the
studies performed and cites the relevant plots. An additional case was studied

Case F || F? P
||
� P?

� |⌃| |Ox| |Oz| |T| |Py| ⌃ Pulls Oi Pulls ⌃ 1D Oi 1D ⌃ 2D
1 60% 40% 1.0 1.0 <0.45 <0.4 <0.4 <0.4 <0.4 4.96 4.97 4.100 4.101 4.98
2 40% 60% 1.0 1.0 <0.45 <0.4 <0.4 <0.4 <0.4 4.103 4.104 4.107 4.108 4.105
3 60% 40% 1.0 1.0 <0.45 <0.4 <0.4 0 0 4.110 4.111 4.114 4.115 4.112
4 50% 50% 0.75 0.75 <0.45 <0.4 <0.4 <0.4 <0.4 4.117 4.118 4.121 4.122 4.119
5 50% 50% 0.70 0.75 <0.45 <0.4 <0.4 <0.4 <0.4 4.124 4.125 4.128 4.129 4.126
6 50% 50% 0.75 0.70 <0.45 <0.4 <0.4 <0.4 <0.4 4.131 4.132 4.135 4.136 4.133
7 50% 50% 0.70 0.75 <0.45 <0.4 <0.4 <0.4 <0.4 4.138 4.139 4.142 4.143 4.140
8 60% 40% 0.70 0.75 <0.45 <0.4 <0.4 <0.4 <0.4 4.145 4.146 4.149 4.150 4.147
9 60% 40% 0.75 0.70 <0.45 <0.4 <0.4 <0.4 <0.4 4.152 4.153 4.156 4.157 4.154

Table VII: Links for figures for each case. Case 7 is same as 5 except the degree
of photon polarization was not taken into account in the log likelihood function
and the average degree of polarization was used to scale the extracted parameter
instead.

same to cases 1 and 5 with a different loglikelihood function (added a parameter
that would absorb the normalization coefficient), with the bias still present (this
method wasnt very stable and that why results are not show). The additional
parameter didnt seem to reduce the bias in the extracted observables.

204

O(10�3)
FR 6= 1
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Summary
• Maximum log-likelihood technique is robust 
• Allows the simultaneous extraction of 3 polarisation 

observables  
• Can be extended to get first estimates of      and 

• Produces reliable results in low statistics 
• Statistical Uncertainties of log-likelihood

Py T

4.8 Summary
Figure 4.209 summarizes the results from this Section. The mean values of the
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Figure 4.209: The parameters determined from fitting the results of this study
with a Gaussian. First row indicates the mean values and standard deviations of
the pull distributions, the second row indicates the linear-fit parameters p

0

and
p
1

, and the third row the mean values and standard deviations of the differences
of true and estimates values, as a function of number of events used. For these
a sample of 9030 estimates was used (except for the 100 and 500 events values
I used 9015 estimates).

pull distributions seem to all be consistent with zero, indicating no systematic
bias of the form Obs

est

= Obs
true

+ ↵. The standard deviations of the pull
distributions show a very small deviation from one that might be due to the
uncertainty of the � and not be due to any systematic effects. Specifically,
the standard deviation of the ⌃ pull is consistent with 1, but both standard
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Systematic Studies of method for extracting observables

•Goal: Extract single and double polarisation observables for 
FSI in 

•Systematic studies of binned technique (fitting asymmetries) 

•1D binned technique produces reliable results 
•2D binned techniques produces strongly biased results  

�d ! K+⇤n

• ⌃ = 0.6

• O
x

= 0.5

• O
z

= �0.5

• T = 0.5

• P
y

= 0.5

• P
lin

= 1.0

• Target proton is at rest and on shell

Asymmetries were calculated as indicate in the LHS of Eq. (3.9) and fitted with a function of the RHS of Eq. (3.9).

A(�) =

N(�)

|| � N(�)

?

N(�)

||
+ N(�)

? =

F
R

� 1 � FRPR+1

PR+1

2

¯P⌃ cos[2(� � �
0

)]

F
R

+ 1 � FRPR�1

PR+1

2

¯P⌃ cos[2(� � �
0

)]

, (3.9)

with P
R

= 1.0, �
0

= 0.0, and F
R

and ⌃ left as free parameters. Figure 3.22 shows the one and two dimensional
asymmetries for generated (left) and gsim processed data (right). The upper plots are integrated over all ✓

i

angles
and the lower plots show the cos ✓

x

vs �. These results show that the acceptance has no effect in the calculation

Figure 3.22: Asymmetries A(�) for generated (left) and gsim processed data (right). The upper row indicated
the azimuthal asymmetries when we integrate over all ✓

i

and the lower row shows a two-dimensional asymmetry
between cos ✓

x

and �.

of the azimuthal asymmetry we we integrate over all ✓
i

. Need to do MANY more studies on these. I need to see
if I can extract the double polarization observables O

x

and O
z

as well as the effect on T on ⌃. I need to run the
simulation using a variety of different values of the observables. The negligible effect we see here might be from
the fact that the value of the target asymmetry is close to the azimuthal asymmetry and that O

x

= �O
z

. If the
integral c

✓x ⇡ c
✓z then the effect of these might cancel in the integral over all ✓

i

.

Study 2 (v0a)

For the second (simplified) study the following where used:

• �
0

= 1.0

• ⌃ = 0.8

• O
x

= �0.5

• O
z

= 0

• T = 0

• P
y

= 0

• P
lin

= 1.0

• Target proton is at rest and on shell

To study the acceptance effects on the determined observables we used four different cases of A(�, ✓
lab

). The three
cases are shown in Fig. 3.23 with the fourth one being the CLAS acceptance as incorporated in GSIM. The first
case, corresponds to ✓

lab

and � equal to 1. In this case, all generated data were used to determine ⌃. In the
second case, events in which all particles (kaon, proton and pion) fell within the detector fiducial region (� : ±3

�

around the coils and 14

� < ✓
lab

< 160

�). The third case, a Fourier series to represent the � and ✓
lab

acceptances
was used. The � was chosen from previous studies, and the ✓

lab

was chosen so that forward acceptance is higher
than backwards. In this case, the accept-reject method was used. Specifically, for each of the final-state particles
a random number between 0 and 1 was generated. The particle was kept if the random number was smaller than
the given function at the particle’s polar and azimuthal angles. Events in which all three particles survived were
used for the determination of ⌃. If my thinking is correct, the determination of the ✓

lab

and � acceptances will
result in the three A(✓0

i

) acceptances (see Eq. (3.5)). As a test I have reproduced the acceptances folded in the
cross section equation of the generated data. Figure 3.24 shows the � (upper row) and ✓ (lower row) for the three
acceptance cases. The red line corresponds to the PDF folded in the cross-section equation (same as in Fig. 3.23 for
comparison). The yellow histograms corresponds to the acceptance of protons only when only the � or ✓ acceptance
was folded in their distribution (1-particle acceptance). The green histogram shows the acceptance of protons only
when both the � AND ✓ acceptance was folded in their distribution (1-particle acceptance). Finally the gray

16
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Systematic Studies of method for extracting observables

• Different log likelihood (LL) techniques ware developed based on various 
assumptions 
•  Allows the simultaneous determination of single and double polarisation 

observables 
• LL technique has been extensively studied using generated data 
• Systematic bias due to acceptance assumptions is              (order of magnitude 

smaller than stat. uncertainty) 

• LL method is more robust for low statistic bins compared to the binned 
techniques

O(10�3)
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Studies of estimating 
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Figure 4.89: ⌃ pull distributions for 8580 estimates of uniformly distributed
observables as shown in Fig. 4.58. The columns show the pulls obtained using
the four approaches and rows for each acceptance case (yellow – no acceptance;
blue – acceptance as in Fig. 3.92; green – gsim acceptance as in Fig. 5.8). Go
back to Tabl. VI.
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1.2 BOS file creator
The BOS file creator BOSwrite_v2.4 reads the TLorentzVector objects and the
label from the root file produced using the generator and outputs a BOS file with
HEAD, MCTK, and MCVX banks filled. The label for the generated event is
stored in the Flag variable of tracks 1�4. Each TLorentzVector object is stored
as a track. A ninth track is written in the MCTK BOS bank that indicates the
particles from the first process (quasi-free) that is not involved in the second
process. In the current version, the final state ⇤ and ⌃ are decayed in GSIM
(⌃⇤ is decayed in the generator). Process 4 includes the rescattering of ⌃ in
the second step, whereas process 9 does not (quasi free ⌃ photoproduction, that
only copies the first step for processing through GSIM). Process 8 corresponds
to the quasi-free reaction �d ! ⇤K+n. The code takes info from the first step of
processes 2 and 3 and rewrites events (labeled 8) in which the second step never
occurred. Table IV shows information written in each track for the six different
reactions. Processes 8 and 9 are only one step processes. For simplicity the

Track
0 1 2 3 4 5 6 7 8

L
ab

el

1 � n ! ⇡0 n ⇡0 p ! ⇤ K+ n
2 � p ! ⇤ K+ K+ n ! K+ n ⇤

3 � p ! ⇤ K+

⇤ n ! ⇤ n K+

4 � p ! ⌃ K+

⌃ n ! ⌃ n K+

5 � p ! ⇡+ n ⇡+ n ! ⇤ K+ n
6 � p ! ⌃

⇤0 K+

⌃

⇤0 n ! ⇤ ⇡0 K+

7 � n ! ⌃

⇤� K+

⌃

⇤� p ! ⇤ ⇡� K+

8 � p ! ⇤ K+

⇤ n ! ⇤ n K+

9 � p ! ⌃ K+

⌃ n ! ⌃ n K+

Table IV: Particle information written in each track of the MCTK bank for
different reactions

Reactions

L
ab

el

1 �n ! ⇡0n ⇡0p ! ⇤K+

2 �p ! ⇤K+ K+n ! K+n
3 �p ! ⇤K+

⇤n ! ⇤n
4 �p ! ⌃K+

⌃n ! ⌃n
5 �p ! ⇡+n ⇡+n ! ⇤K+

6 �p ! K+

⌃

⇤0
⌃

⇤0 ! ⇤⇡0

7 �n ! K+

⌃

⇤�
⌃

⇤� ! ⇤⇡�

8 �p ! ⇤K+

9 �p ! ⌃K+

Table V: Summary of reactions for each label

6

accidental background

The missing-mass for each event is calculated using the nominal mass
of the ⇤ and the corrected three-momenta of the proton-pion pair –
P
X

= (~p
p

+ ~p
⇡

, 1.15683). The missing-mass cut and invariant-mass was applied
after momentum corrections (both eloss and GSIM momentum corrections).
To fit the simulated and accidental background shapes to the actual
missing-mass distribution one needs to use identical binning (this is
the ideal case – one can do it without identical bining but the code
for background fitting needs to be adjusted to take into account the
variable bin size between the background and signal). The initial
choice of binning is 400 bins with lower bin value M

X

= 0.0 GeV/c2
and upper bin value of M

X

= 1.4 GeV/c2, yielding a bin width of
0.014 GeV/c2. The choice of bin number is arbitrary. However, a relatively
big number of events was chosen such that if statistics are low, we can rebin
the histograms for data and background channels in a way to have the same
bin numbers in all cases. This also allows us to get more information of the
background shapes in high-statistic bins.

Accidentals

The accidental background was determined using the actual data. In this case,
we constructed three accidental background: proton, pion, and kaon accidentals.
Each of these distributions was determined by randomly selecting an event from
the entire data set and replacing our corresponding particle from the event of
interest with the one from the random event. Fro example, the accidental proton
background was determined by calculating the missing mass of the reaction
�d ! K+

⇤X in which the ⇤ was reconstructed using a proton from a random
event and the pion of the event of interest. The missing-mass distribution also
reflects the same cuts as the analysis (i.e. PID, and photon selection, missing-
momentum cut, invariant-mass cut, as well as the construction of the missing-
mass taking into account the PDG mass of the ⇤). In the case of the Kaon
accidental the photon is selected before the random kaon is selected. Figure 6.55
shows the distributions (invariant mass and missing mass) for proton, pion, and
kaon accidental events.
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Figure 6.55: Invariant mass (top) and missing mass (bottom) for proton, pion,
and kaon accidental events.
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6.4 Understanding the missing mass vs invariant mass
The missing mass vs invariant mass distribution has a lot of structures that we aim in addressing in this section.
Figure 6.38 shows an overview of these studies. This plot was created with PID cuts, photon selection, missing-
momentum cuts and cog-edge cuts.

Figure 6.38: Missing mass vs invariant mass distribution of all data indicating the contributions of different channels.

�d ! p⇡+⇡�n

The lower horizontal band belongs to events from the reaction �d ! p⇡+⇡�n. In this case, the positive pion was
misidentified as a kaon. A tighter cut on the kaon reduces contributions from this channel as shown in Fig. 6.39.
Figure 6.40 shows the missing mass of �d ! K+p⇡�X as a function of invariant mass when the kaon is actually a

Figure 6.39: Missing mass vs invariant mass distribution of all data indicating the contributions of different channels.
The lower horizontal band is reduced (left plot) with a tighter PID on the kaon.

pion (using a kaon mass in the missing-mass calculation but passes the pion PID) –left panel, and as a function of
�d ! ⇡ + p⇡�X – right panel. One can remove contributions from the �d ! ⇡ + p⇡�X with a diagonal cut, but
this will also change the shape of the tails of the reaction of interest (and accidental events).
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Systematic studies

Case |⌃| O
x

O
z

T P
y

⌃ Pulls O
i

Pulls ⌃ 1D O
i

1D ⌃ 2D
1 <0.35 0.5 0.5 0.5 0.5 4.59 4.60 4.62 4.63 4.61
2 <0.35 -0.5 -0.5 0.5 0.5 4.64 4.65 4.67 4.68 4.66
3 <0.35 0.5 0.5 -0.5 -0.5 4.69 4.70 4.72 4.73 4.71
4 <0.35 0.5 -0.5 0.5 -0.5 4.74 4.75 4.77 4.78 4.76
5 <0.35 -0.5 0.5 -0.5 0.5 4.79 4.80 4.82 4.83 4.81
6 <0.35 -0.5 -0.5 -0.5 -0.5 4.84 4.85 4.87 4.88 4.86
7 <0.45 -0.4–0.4 -0.4–0.4 -0.4–0.4 -0.4–0.4 4.89 4.90 4.93 4.94 4.91

Table VI: Links for figures for each case
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Figure 4.58: Values of observables that were randomly selected for case 7
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GSIM Momentum Corrections
Figure 6.6: Difference between generated and eloss-corrected momentum as a
function of eloss-corrected momentum for protons in z-bin 3 and all theta bins.

Figure 6.7: Difference between generated and eloss-corrected momentum as a
function of eloss-corrected momentum for protons in z-bin 4 and all theta bins.
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Fits on Photon-energy bins Figure 6.70 shows the fits performed on the
data of Fig. 6.58 for each photon-energy bin using the simulated data of Fig. 6.56,
the accidental distributions of Fig. 6.55 and a double Gaussian

GG(x, p) = p
0

e
� (x�p

1

)

2

p2
2

+ p
3

e
� (x�p

1

)

2

p2
4 . (6.34)

The fitting procedure is iterative. An initial fitting using a simple Gaussian is
done on the neutron peak and the results of this are used as initial parameters of
the subsequent fit. The ⌃

0 backgrounds are also fitted separately in a restricted
missing-mass range to obtain additional initial parameters. Same is done for
the ⌃

⇤. Figure 6.71 shows the extracted fit parameters for each photon-energy
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Figure 6.70: Missing-mass distributions fitted with simulated data, accidentals,
and a double Gaussian to perform background subtraction. Contributions from
each source are shown separately – cyan for double gaussian; green for ⌃

0 FSI
and QF, and blue for ⌃

⇤� and ⌃

⇤0. Accidental background is also shown purple
red.

bin from Fig. 6.70. These parameters and their uncertainties are then used to
calculate the ratios rj

i

and propagate the uncertainty to the observables. For
the lower photon-energy bins, the background is not well described from the
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and take into account all kinematic variables, including the ones the cross sec-
tion depends on (i.e. �, cos ✓

x

, cos ✓
y

etc.). However, we can approach this
problem from a different perspective and correct for background contributions
after our observable was determined. To do this lets consider the following cross
sections:

d�T

d⌦
= �T

[1 ⌥ ⌃

T

cos 2� ⌥ ↵ cos ✓
x

OT

x

sin 2�

⌥↵ cos ✓
z

OT

z

sin 2� + · · · ], (6.4)

corresponds to the cross section of events that fall within 3� of our neutron peak
in the missing-mass distributions. Specifically, this includes contributions from
the signal cross section (S), the background cross sections (B), and contributions
from accidentals (A). These can be written as:

d�S

d⌦
= �S

[1 ⌥ ⌃

S

cos 2� ⌥ ↵ cos ✓
x

OS

x

sin 2�

⌥↵ cos ✓
z

OS

z

sin 2� + · · · ], (6.5)

d�B

d⌦
= �B

[1 ⌥ ⌃

B

cos 2� ⌥ ↵ cos ✓
x

OB

x

sin 2�

⌥↵ cos ✓
z

OB

z

sin 2� + · · · ], and (6.6)

d�A

d⌦
= �A

[1 ⌥ ⌃

A

cos 2� ⌥ ↵ cos ✓
x

OA

x

sin 2�

⌥↵ cos ✓
z

OA

z

sin 2� + · · · ], (6.7)

From Eq.(6.4)-(6.7) the following is deduced:

�T

= �S

+ �B

+ �A (6.8)
�T

⌃

T

= �S

⌃

S

+ �B

⌃

B

+ �A

⌃

A (6.9)
�TOT

x

= �SOS

x

+ �BOB

x

+ �AOA

x

(6.10)
�TOT

z

= �SOS

z

+ �BOB

z

+ �AOA

z

(6.11)

The accidental background is not expected to be polarized and therefore the
equations above are simplified by assuming ⌃

A

= OA

x

= OA

z

= 0.

�T

= �S

+ �B

+ �A (6.12)
�T

⌃

T

= �S

⌃

S

+ �B

⌃

B (6.13)
�TOT

x

= �SOS

x

+ �BOB

x

(6.14)
�TOT

z

= �SOS

z

+ �BOB

z

(6.15)
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Figure 6.72: Case 1 from Tab III. Missing-mass distributions fitted with simu-
lated data, accidentals, and a double Gaussian to perform background subtrac-
tion. Contributions from each source are shown separately – cyan for double
gaussian; green for ⌃

0 FSI and QF, and blue for ⌃

⇤� and ⌃

⇤0. Accidental
background is also shown in purple, and black indicates contributions from
misidentified pions
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again Eq. (6.12)- (6.15) for ⌃

S for each cut in missing mass
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This is because the observables for signal and background should be independent
of the missing-mass cut but the observable extracted using all events depends on
the different contributions of background and signal events. The parameters rA

i

,
rB
i

, and ⌃

T

i

(where i = a, b) are determined from fitting the missing-mass dis-
tribution and extracting the observables for each missing-mass cut. Therefore,
only two unknown remain: the signal and background bservables (⌃S � ⌃

B , or
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). The two equations for each observable can be solved
for these two unknowns, resulting in the following solutions:
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Uncertainty of the background subtraction can be propagated from each total
observable and ratio, rj

i

to our signal observable. Specifically, the uncertainty
of the ratios is calculated by propagating the uncertainty of the fit parameters
(when we fit the missing-mass of data with the missing-mass from simulation).
For example the ratio rB

a

corresponds to the integral of the background his-
togram from simulation scaled to fit the data under the neutron peak divided by
the integral of actual data within the same interval (i.e. rB

a

=

P
i

c
i

Ii
sim

/I
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),
where c
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are the scale factors returned from the fit. The uncertainties of c
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and ⌃
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Figure 3.26: 1D over �
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Figure 3.26: 1D over �
K

+ and 2D over �
K

+ and cos ✓
x

asymmetries fitted to determine ⌃

1D

, and ⌃

2Dx

and O
x

for
the three acceptance cases. Lower row shows the 2D fit for the three cases.

T2DAcc2 T determined through 2-D fitting over � and cos ✓
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for Acceptance case 2
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• ⌃ = 0.6

• O
x

= 0.5

• O
z

= �0.5

• T = 0.5

• P
y

= 0.5

• P
lin

= 1.0

• Target proton is at rest and on shell

Asymmetries were calculated as indicate in the LHS of Eq. (3.9) and fitted with a function of the RHS of Eq. (3.9).

A(�) =

N(�)

|| � N(�)

?

N(�)

||
+ N(�)

? =

F
R

� 1 � FRPR+1

PR+1

2

¯P⌃ cos[2(� � �
0

)]

F
R

+ 1 � FRPR�1

PR+1

2

¯P⌃ cos[2(� � �
0

)]

, (3.9)

with P
R

= 1.0, �
0

= 0.0, and F
R

and ⌃ left as free parameters. Figure 3.22 shows the one and two dimensional
asymmetries for generated (left) and gsim processed data (right). The upper plots are integrated over all ✓

i

angles
and the lower plots show the cos ✓

x

vs �. These results show that the acceptance has no effect in the calculation

Figure 3.22: Asymmetries A(�) for generated (left) and gsim processed data (right). The upper row indicated
the azimuthal asymmetries when we integrate over all ✓

i

and the lower row shows a two-dimensional asymmetry
between cos ✓

x

and �.

of the azimuthal asymmetry we we integrate over all ✓
i

. Need to do MANY more studies on these. I need to see
if I can extract the double polarization observables O

x

and O
z

as well as the effect on T on ⌃. I need to run the
simulation using a variety of different values of the observables. The negligible effect we see here might be from
the fact that the value of the target asymmetry is close to the azimuthal asymmetry and that O

x

= �O
z

. If the
integral c

✓x ⇡ c
✓z then the effect of these might cancel in the integral over all ✓

i

.

Study 2 (v0a)

For the second (simplified) study the following where used:

• �
0

= 1.0

• ⌃ = 0.8

• O
x

= �0.5

• O
z

= 0

• T = 0

• P
y

= 0

• P
lin

= 1.0

• Target proton is at rest and on shell

To study the acceptance effects on the determined observables we used four different cases of A(�, ✓
lab

). The three
cases are shown in Fig. 3.23 with the fourth one being the CLAS acceptance as incorporated in GSIM. The first
case, corresponds to ✓

lab

and � equal to 1. In this case, all generated data were used to determine ⌃. In the
second case, events in which all particles (kaon, proton and pion) fell within the detector fiducial region (� : ±3

�

around the coils and 14

� < ✓
lab

< 160

�). The third case, a Fourier series to represent the � and ✓
lab

acceptances
was used. The � was chosen from previous studies, and the ✓

lab

was chosen so that forward acceptance is higher
than backwards. In this case, the accept-reject method was used. Specifically, for each of the final-state particles
a random number between 0 and 1 was generated. The particle was kept if the random number was smaller than
the given function at the particle’s polar and azimuthal angles. Events in which all three particles survived were
used for the determination of ⌃. If my thinking is correct, the determination of the ✓

lab

and � acceptances will
result in the three A(✓0

i

) acceptances (see Eq. (3.5)). As a test I have reproduced the acceptances folded in the
cross section equation of the generated data. Figure 3.24 shows the � (upper row) and ✓ (lower row) for the three
acceptance cases. The red line corresponds to the PDF folded in the cross-section equation (same as in Fig. 3.23 for
comparison). The yellow histograms corresponds to the acceptance of protons only when only the � or ✓ acceptance
was folded in their distribution (1-particle acceptance). The green histogram shows the acceptance of protons only
when both the � AND ✓ acceptance was folded in their distribution (1-particle acceptance). Finally the gray
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Figure 3.26: 1D over �
K

+ and 2D over �
K

+ and cos ✓
x

asymmetries fitted to determine ⌃

1D

, and ⌃

2Dx

and O
x

for
the three acceptance cases. Lower row shows the 2D fit for the three cases.
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