g12 status

- g12 group review ongoing (second round)
- Key issues:
 - MC/Data Comparison
 - Normalization
- Key results
- Road forward

Lei Guo, Florida International University, g12 group

Data quality: Mass positions

MC/Data comparison $\gamma p \rightarrow p \pi^+ \pi^-$

Included: TOF knockout (Dead/Bad paddles); Wire efficiency map (gpp) Good agreement between data/simulation (Dead/inefficient areas correctly simulated) Simulation: phase space

TOF knockout

• Dead paddles (occupancy)

• Unstable (resolution/shifting)

Sector 1:	6, 35, 40, 41, 50, 56
Sector 2:	2, 8, 34, 35, 41, 44, 50, 54, 56
Sector 3:	11, 35, 40, 41, 56
Sector 4:	41, 48
Sector 5:	48
Sector 6:	1, 5, 33, 56

Sector 1:	25, 26
Sector 2:	18, 25, 27
Sector 3:	1, 18, 32
Sector 4:	8, 19
Sector 6:	24

- The combined list has small statistical impact
- Most are in the backward region

Normalization

Flux normalized yields (ω) do not show inefficiency at high currents (60nA) Overall uncertainty in normalization (from 60nA/65nA comparison) ~6%

Dynamic Track-dependent Efficiency Map (MK)

Proton Over-Efficiency at -90. < z < -85. cm at 0.75 < P < 1 GeV

 $\pi^{\text{-}}$ Over-Efficiency at -90. < z < -85. cm at 0.5 < P < 0.75 GeV

- Methology: Use $\gamma p \rightarrow p\pi^+\pi^-$ and compare MC/Data Reconstruction efficiency compared
- MC found to have over-efficiency;
- Correction derived for p, π^+, π^-
- Functions of z, momentum, angles
- Derived with and without multiple photon

Cross section results (Johann):

Cross section results (Zulkaida): $\gamma p \rightarrow p\omega \rightarrow p\pi^{+}\pi^{-}(\pi^{0})$

Cross section results (MK): $\gamma p \rightarrow p\pi^0 \rightarrow pe^+e^-(\gamma)$

- Cross section results fed back to simulation(PLUTO)
- All photons analyzed, no multiple photon correction
- g12 results consistent with g1c (backwards)
- At forward angles, g12 has the highest statistics
- Across the whole range, g12 agrees with world data

Polarization measurements/uncertainty: beam helicity asymmetries

- (derived from single pion channels)
- Beam polarization uncertainty: ~5%
- g1c/g12 comparison: pulls~0.01 (Not exactly a fair comparison since the mean values off φ are not the same)
- g12 is self consistent as well (FIU/FSU)

Summary

- We would like to thank the review committee
- All corrections (standard/g12 specific) performed and systematics checked
- g12 cross sections (strange/lepton/hadron) all in good agreement with prior results
- Polarization measurements also consistent with existing results
- Multiple results ready for review (Thesis/Analysis/Paper draft written)
 - π^0 cross section (MK)
 - Meson->K_sK_s (Schloka/Ken)
 - Ξ^{-} polarization (Jason)
 - Ξ^{-} cross section and Ξ^{-*} upper limit (Johann)
 - ρ/ω interference (MP)
 - Many other analysis are in mature stage (PWAs, Asymmetries,)