PHENOMENOLOGY OF DIHADRON FRAGMENTATION FUNCTIONS AT CLAS12

Aurore Courtoy

CINVESTAV/CONACyT (Mexico)

Dihadron Fragmentation Functions

Fragmentation

- → Asymmetries at Belle
- ➡ Multiplicities at CLAS12
- SIDIS with Dihadron
- **Confinement**
 - ➡ Transversity
 - ➡ Higher-twist PDFs

HADRONIZATION

Hadronization of the quark into a hadron h

Hadronization of the quark into a hadron h

Hadronization of the quark into a hadron h

- **TMD Fragmention and Distribution functions**
- Sonvolution

- Section 2 Collinear Distribution functions
- Simple product

- **TMD Fragmention and Distribution functions**
- Sonvolution
- More Lorentz structures

- Collinear Distribution functions
- Simple product

- Final Fragmention and Distribution functions
- Sonvolution
- More Lorentz structures
- 3D ``tomography"

- Section 24 Collinear Distribution functions
- Simple product
- 1D "tomography"

- Final Fragmention and Distribution functions
- Sonvolution
- More Lorentz structures
- 🗳 3D ``tomography"

- Collinear Distribution functions
- Simple product
- 🗳 1D ``tomography"
- 2pion physics

SI PION PAIRS PRODUCTION @ BELLE

[Belle Collaboration, PRL107]

[Radici, A.C., Bacchetta, Radici, Guagnelli, JHEP 1505]

MULTIPLICITIES

Improve knowledge on Dihadron FF

 \rightarrow think reduce uncertainty

$$M^h(z, m_{\pi\pi}, x; Q^2) = \frac{\sum_q e_q^2 f_1^q(x; Q^2) D_1^q(z, m_{\pi\pi}; Q^2)}{\sum_q e_q^2 f_1^q(x; Q^2)}$$

- 🗳 exp. input at lower Q²
- test PWE & higher twists
- better knowledge on (z, M_h)-dpdence

Based on [A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]

MULTIPLICITIES

Ş AUL $A_{UL}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xh_L^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$

AUT @ HERMES & COMPASS

DIHADRON SIDIS

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h; Q) = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x; Q^2) H_{1,sp}^{\triangleleft q}(z, M_h; Q^2)}{\sum_q e_q^2 f_1^q(x; Q^2) D_1^q(z, M_h; Q^2)}$$

[Jaffe, Jin, Tiang, PRL 80] [Radici, Jakob & Bianconi, PRD65]

 $\begin{array}{|c|c|} & \textbf{ALU} \\ & A_{LU}^{\sin\phi_R\sin\theta}\left(x, y, z, M_h, Q\right) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xe^q(x) H_{1,sp}^{\triangleleft,q}(z, M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z, M_h)\right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z, M_h)} \end{array}$

$$A_{UL}^{\sin\phi_R\sin\theta}(x, y, z, M_h, Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x h_L^q(x) H_{1,sp}^{\triangleleft,q}(z, M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z, M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z, M_h)}$$

DIHADRON SIDIS ON PROTON & DEUTERON

2002-4 Deuteron Data

2007 Proton Data

$$A_{\text{DIS}}(x, z, M_h^2, Q^2) = -C_y \frac{\sum_q e_q^2 h_1^q(x, Q^2) \frac{|\bar{R}|}{M_h} H_{1, sp}^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2) D_1^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}$$

DIHADRON SIDIS ON PROTON & DEUTERON

$$A_{\text{DIS}}(x, z, M_h^2, Q^2) = -C_y \frac{\sum_q e_q^2 h_1^q(x, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2)} \frac{|\bar{R}|}{M_h} H_{1, sp}^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}{D_1^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}$$

DIHADRON SIDIS ON PROTON & DEUTERON

STATE-OF-THE-ART TRANSVERSITY

STATE-OF-THE-ART TRANSVERSITY

FUTURE OF THE TRANSVERSITY

FUTURE OF THE TRANSVERSITY

FUTURE OF THE TRANSVERSITY

Proposal for CLAS12

PR12-12-009

$$A_{UL}^{\sin \phi_R \sin \theta} (x, y, z, M_h, Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x h_L^q(x) H_{1,sp}^{\triangleleft,q}(z, M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z, M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z, M_h)}$$

 $A_{LU}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xe^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$

 $A_{LU}^{\sin\phi_R\sin\theta}(x, y, z, M_h, Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xe^q(x) H_{1,sp}^{\triangleleft,q}(z, M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z, M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+np}^q(z, M_h)}$

GOAL: extract e(x)

...from CLAS data

...from CLAS data

FIRST TRY EXTRACTION

Assume no dynamical higher-twist in the fragmentation part

TWIST-3 PDF @CLAS12

Analysis Proposal for

Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium

A 12 GeV Research Proposal to Jefferson Lab (PAC 42)

E12-06-112B Silvia Pisano & A.C.

e(x)

- 🖗 related to the scalar charge
- quark-gluon correlation
- 🏺 quark mass term

BSM FUNDAMENTAL INTERACTIONS?

Example: New fundamental interaction from beta decay?

 $\Delta \mathcal{L}_{eff} = G_F V_{ud} \sqrt{2} \epsilon_S g_S \,\bar{p}n \cdot \bar{e}(1 - \gamma_5)\nu_e$ $-4G_F V_{ud} \sqrt{2} \epsilon_T g_T \,\bar{p}\sigma_{\mu\nu}n \cdot \bar{e}\sigma^{\mu\nu}(1 - \gamma_5)\nu_e$

[Cirigliano et al., NPB 830]

[AC,Baessler,Gonzalez-Alonso,Liuti, PRL 115]

BSM FUNDAMENTAL INTERACTIONS?

Example: New fundamental interaction from beta decay?

 $\Delta \mathcal{L}_{eff} = G_F V_{ud} \sqrt{2} \epsilon_S g_S \,\bar{p}n \cdot \bar{e}(1 - \gamma_5)\nu_e$ $-4G_F V_{ud} \sqrt{2} \epsilon_T g_T \,\bar{p}\sigma_{\mu\nu}n \cdot \bar{e}\sigma^{\mu\nu}(1 - \gamma_5)\nu_e$

[Cirigliano et al., NPB 830]

$$\int_{-1}^{1} dx \, h_1^{u_V - d_V}(x) = g_T$$

Collins extraction 0.002 **DVMP GGL** 0.001 ΕĻ 0.000 **Present DiFF extraction** -0.001 **Future DiFF extraction** -0.002 0.0 0.1 0.2 0.3 0.4 0.5 0.6 $\frac{\Delta g_T}{\Delta T}$ gт

BSM FUNDAMENTAL INTERACTIONS?

 $\epsilon_{\rm T}$ vs. $\epsilon_{\rm S}$ plane from beta decay observables

with **ε_s=0.0011(21)** at 90% CL from Gonzalez & Camalich, PRL112.

with **<g**_T**>=0.839(357)** from GGL & Pavia new

 $\stackrel{\scriptstyle \odot}{=} 1\sigma$ errors

Hessian in blue & pink

- Rfit method in red
- Scatter plot in blue
- **MC 1D gives** $<\epsilon_T> =0.0012$

CONCLUSIONS

Vector, axial OK from first principles

- Dihadron SIDIS is a good tool to
 - access to scalar, tensor structures
 - glimpse of quark-gluon correlations
- Get more info on DiFF from CLAS12 as well

BACK UP

Proposal

Figure 14: Q^2 vs. x_B for the final di-hadron sample.

SIDIS CROSS SECTION

No clean extraction of DISTRIBUTION part without INDEPENDENT process for the FRAGMENTATION PART!!

SIDIS CROSS SECTION

FRAGMENTATION FUNCTIONS are accessed in e+e- annihilation

FRAGMENTATION IN ELECTRON-POSITRON ANNIHILATION

Transverse mmt dep.

$$d\sigma \propto \sum_{q} \left[\mathrm{FF}^{q} \otimes \mathrm{FF}^{\bar{q}} \right] (z_{1}, z_{2}, \mathbf{P}_{1\perp}, \mathbf{P}_{2\perp})$$

- 2007: first success of a great collaboration
- First global fit including a CHIRAL-ODD PDF
- Anselmino et al. "Transversity and Collins functions from SIDIS and e⁺ e⁻ data"

- 2007: first success of a great collaboration
- First global fit including a CHIRAL-ODD PDF
- Anselmino et al. "Transversity and Collins functions from SIDIS and e⁺ e⁻ data"
- 2010: The Pavia group started the collaboration with Belle on DIHADRON production
- We had to make up for the lack of hadron multiplicities...
- 2011: we manage to fit the unpolarized FF

- **2007:** first success of a great collaboration
- First global fit including a CHIRAL-ODD PDF
- Anselmino et al. "Transversity and Collins functions from SIDIS and e⁺ e⁻ data"
- **2010:** The Pavia group started the collaboration with Belle on DIHADRON production
- We had to make up for the lack of hadron multiplicities...
- 2011: we manage to fit the unpolarized FF
- 2011: first EXTRACTION of a CHIRAL-ODD PDF
- **2011-now:** fits for valence distributions, improvement of statistical techniques, proposals for more measurements, ...

- **2010:** The Pavia group started the collaboration with Belle on DIHADRON production
- We had to make up for the lack of hadron multiplicities...
- 2011: we manage to fit the unpolarized FF
- 2011: first EXTRACTION of a CHIRAL-ODD PDF
- **2011-now:** fits, improvement of statistical techniques, proposals for more measurements

- 2013-now: subleading-twist
- first EXTRACTION of a subleading PDF
- e(x) related to the nuclear SCALAR CHARGE & Sigma pion-nucleon
 - 2015-6?: publish CLAS analysis & extraction!

MANPOWER LIMITING PROGRESS

- Very FEW Belle members dedicated to hadronic physics (~5-6)
- Same for BaBar (~1-2)
- Lack of interest from the e⁺e⁻ community

MANPOWER LIMITING PROGRESS

- Very FEW Belle members dedicated to hadronic physics (~5-6)
- Same for BaBar (~1-2)
- Lack of interest from the e⁺e⁻ community

Study of Fragmentation Functions in e^+e^- Annihilation

Mauro Anselmino,¹ Harut Avakian,² Alessandro Bacchetta,³ Aurore Courtoy,⁴ Abhay Deshpande,⁵ Renee Fatemi,⁶ Leonard Gamberg,⁷ Haiyan Gao,⁸ Matthias Grosse Perdekamp,⁹ Zhong-Bo Kang,¹⁰ Sebastian Kuhn,¹¹ John Lajoie,¹² Hrayr Matevosyan,¹³ Andreas Metz,¹⁴ Zein-Eddine Meziani,¹⁴ Akio Ogawa,¹⁵ Silvia Pisano,¹⁶ Alexei Prokudin,² Marco Radici,¹⁷ Ted Rogers,¹⁸ Patrizia Rossi,² Ami Rostomyan,¹⁹ Peter Schweitzer,²⁰ Anselm Vossen,²¹ and Feng Yuan²² June Bortoman,¹⁹ Beter Schweitzer,²⁰ Anselm Vossen,²¹ and Feng Yuan²² June Bortoman,¹⁹ Beter Schweitzer,²⁰ Anselm Vossen,²¹ and Feng Yuan²²

NSAC white paper

SCALAR CHARGE

$$\int_{-1}^{1} dx \, e^q(x, Q^2) \,=\, \int_{-1}^{1} dx \, e^q_{\text{loc}}(x, Q^2) = \frac{1}{2M} \, \langle P | \bar{\psi}_q(0) \psi_q(0) | P \rangle(Q^2) = \sigma_q(Q^2)$$

$$\sigma_u(Q^2) + \sigma_d(Q^2) \equiv \frac{\sigma_{\pi N}}{(m_u(Q^2) + m_d(Q^2))/2}$$

pion-nucleon sigma-term

$$\sigma_{\pi N} = \Sigma_{\pi N} (= 79 \pm 7 \text{MeV}) - 15 \text{MeV}$$
GWII (200

GWU (2002) result

Future: theoretically interpret & apply to models for scalar interactions! D. Delepine & E. Peinado

LFCQ model : Lorcé et al. [arXiv:1411.2550]

TRIPTIC OF BSA EXTRACTION

CHECK for DiFFs in z and $m_{\pi\pi}$

$$A_{LU,\text{fit}}^{\sin\phi_R}(x_i, m_{\pi\pi,i}, z_i; Q_i, y_i) = -\frac{W(y_i)}{A(y_i)} \underbrace{M}_{Q_i} n_x \underbrace{\int_{z_{\min,i}}^{z_{\max,i}} dz \int_{(m_{\pi\pi,\min})i}^{(m_{\pi\pi,\max})i} \frac{|\mathbf{R}|}{m_{\pi\pi}} H_1^{\triangleleft,u}(z, m_{\pi\pi}, Q_i^2)}_{\int_{z_{\min,i}}^{z_{\max,i}} dz \int_{(m_{\pi\pi,\min})i}^{(m_{\pi\pi,\min})i} D_1^u(z, m_{\pi\pi}, Q_i^2)}$$

integral of x dependence guessed here~0.2 leading-twist DiFFs known from PAVIA fit

BEYOND WW

$$A_{LU}^{\sin\phi_R}(x_i, m_{\pi\pi\,i}, z_i; Q_i, y_i) = -\frac{W(y_i)}{A(y_i)} \frac{M}{Q_i} \frac{x_i \left[e^V(x_i, Q_i^2)\right] n_{u,i}^{\uparrow}(Q_i^2) + \left[f_1^V(x_i, Q_i^2)\right] / z_i n_{u,i}^{G^{\triangleleft}}(Q_i^2)}{\sum_{q=u,d,s} e_q^2 f_1^q(x_i, Q_i^2) n_{q,i}(Q_i^2)}$$

Twist-3 DiFFs from DSA?

$$F_{LL}^{\cos\phi_R} = -\sum_q e_q^2 x \frac{|R|\sin\theta}{Q} \frac{1}{z} g_1^q(x) \widetilde{D}^{\triangleleft q} (z, \cos\theta, m_{hh})$$

$$n_u^{\widetilde{G}^{\triangleleft}}(Q_i^2) \stackrel{\text{assump.}}{\equiv} n_u^{\widetilde{D}^{\triangleleft}}(Q_i^2) \cong \kappa \, n_u^{\uparrow}(Q_i^2)$$

From DSA we estimate an upper limit with κ =0.2

PDF part /z~0.7
 Q x D₁ part~1.
 H₁[<] part~0.2

 A_{LL}

0.05

-0.05 -0.1 -0.15 -0.2

0.15

Sergio's analysis of cos modulation of

DSA

0.2

0.25

0.3

 \mathcal{X}_B

 $A_{LL}^{\text{const}} \propto g_1(x_B) D_1^q(z,$

 $A_{LL}^{\cos\varphi_R} \propto g_1(x_B) D^{\tilde{q}q}(z)$

BEYOND WW

$$A_{LU}^{\sin\phi_R}(x_i, m_{\pi\pi\,i,}, z_i; Q_i, y_i) = -\frac{W(y_i)}{A(y_i)} \frac{M}{Q_i} \frac{x_i \left[e^V(x_i, Q_i^2) \right] n_{u,i}^{\uparrow}(Q_i^2) + \left[f_1^V(x_i, Q_i^2) \right] / z \left[n_{u,i}^{\tilde{G}^{\triangleleft}}(Q_i^2) \right]}{\sum_{q=u,d,s} e_q^2 f_1^q(x_i, Q_i^2) n_{q,i}(Q_i^2)}$$

Twist-3 DiFFs from DSA?

$$F_{LL}^{\cos\phi_R} = -\sum_q e_q^2 x \frac{|R|\sin\theta}{Q} \frac{1}{z} g_1^q(x) \widetilde{D}^{\triangleleft q} (z, \cos\theta, m_{hh})$$

$$n_u^{\widetilde{G}^{\triangleleft}}(Q_i^2) \stackrel{\text{assump.}}{\equiv} n_u^{\widetilde{D}^{\triangleleft}}(Q_i^2) \cong \kappa \, n_u^{\uparrow}(Q_i^2)$$

From DSA we estimate an upper limit with κ =0.2

PDF part /z~0.7
 Q x D₁ part~1.
 H₁[<] part~0.2

higher-twist DiFFs unknown

Ā 0.05 -0.05 -0.1E -0.15 -0.2 0.15 0.2 0.25 0.3 0.35 $x_{\underline{B}}$ Sergio's analysis of cos modulation of $A_{LL}^{\text{const}} \propto g_1(x_B) D_1^q(z,$ DSA $A_{LL}^{\cos\varphi_R} \propto g_1(x_B) D^{\tilde{\triangleleft} q}(z)$

0.0 0.1 0.2 0.3 0.4 0.5 0.6