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Motivation
• Provide first measurement of the final-state neutron spin 

polarisation from  

• Unexpected results of proton polarisation indicated a 
new dibaryonic resonance state 
• supported by numerous recent experiments  

• Allow investigation of the recently discovered resonant 
state d*(2380) 

• A key expectation from this dibaryonic state is that both 
proton and neutron would show a high degree of 
polarization 

�d ! pn
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0 ⇥ ẑ
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Figure 5.1. Distribution of horizontal (left) and vertical (right) components of the vertex position
of multi-track events, for all events from one representative run in g13b. The Gaussian fit is used
to extract the mean and the standard deviation of the beam line position.

Figure 5.2. Mean (left), and standard deviation (right) of the x (blue) and y (red) components
of the beam-line position as a function of run number. The mean values were used for the vertex
reconstruction of events where one particles is detected.
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Reaction Reconstruction
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hdoca
Entries    1.225669e+07
Mean    1.135
RMS     1.388

 DOCA (cm)
0 1 2 3 4 5 6 7 8 9 10

 c
ou

nt
s

0

200

400

600

800

1000

1200
310× hdoca

Entries    1.225669e+07
Mean    1.135
RMS     1.388

DOCA (Track 1 and 2)

hdoca0
Entries  6128343
Mean   0.5901
RMS    0.7049

 DOCA (cm)
0 1 2 3 4 5 6 7 8 9 10

 c
ou

nt
s

0

200

400

600

800

1000

310× hdoca0
Entries  6128343
Mean   0.5901
RMS    0.7049

� � pi DOCA

DOCA psmall

DOCA plarge

�� cut

Select p based on DOCA 
p1 proton with smallest DOCA 
p2 proton with largest DOCA 

Event Vertex DOCA of p1



g13 experiment

6

  Experiment run in 2006-2007
  LD2 Target 40 cm long

  Two photon polarisation settings
Circular (g13a)
Linear (g13b)

50 billion physics events

g13b 
• Current: ~10 nA 
• Eight e-beam energies 

between 3.3 and 5.16 
GeV 

• Collected events for 6 
photon-energy bins 
between 1.1 and 2.3 GeV 

• 30 billion events  

g13a 
• Current: ~40 nA 
• Two e-beam energies 

• 1.990 GeV 
• 2.655 GeV 

• 20 billion events  
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Photon Selection
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Photon Selection
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Vertex Position
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Missing Mass
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Figure 1.2.11: DOCA distribution of the two tracks after ranking. The ranking has a 2 cm difference
requirement (i.e. if track 2 doca minus track 1 doca is larger than 2 cm then track 1 originated from initial
vertex).
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Figure 1.2.12: Difference between reconstructed momentum, angles and vertices of the two proton tracks
with the generated proton before the tracks are ranked. The last row shows the difference between the evnt
vertices and the true proton vertex whereas the 3rd row shows the POCA vertices difference.

Figure 1.2.12 shows the difference between the reconstructed momenta, angles and vertex of the two tracks,
with the true generated proton momentum, after ranking based on DOCA. This shows that the DOCA
ranking allows us to identify the proton from the initial vertex in most of the cases.
Figure 1.2.13 show the same info as in Fig 1.2.12 but in 2D.
Figure. 1.2.14 shows the two dimensional momentum difference between the ranked tracks and the true
proton momentum. This indicates that in several events the proton from deuteron photo disintegration
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Photon Polarisation
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Analysing Power
• Use results from SAID on α  

• Develop GEANT4 simulation of g13 target and ST to establish an effective α 
• GEANT4 accurately calculates energy losses and θsc distributions it does 

not include effects of polarised scattering 
• We will provide proper algorithms to introduce the polarised distributions to 

obtain the analysing power from simulation

7. POLARISED NUCLEON SCATTERING

Figure 7.9: SAID calculation of the proton-proton (top) and proton-neutron (bot-

tom) analysing powers [93].

80
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• Determination of the neutron polarisation from 
deuteron photodisintegration utilising CLAS data  
(g13) is underway 

• Distance of closest approach between γ and each 
proton allows us to identify the proton from                
and thus reconstruct the neutron 

•  Angular distributions of second proton with respect to 
neutron are determined  

• Monte Carlo simulations will be used to obtain the 
effective analysing power   

• First results on neutron polarisation transfer weighted 
by the effective analysing power were determined 

�d ! pn

np ! pn

�d ! pn
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• Determination of the neutron polarisation from 
deuteron photodisintegration utilising CLAS data  
(g13) is underway 

• Distance of closest approach between γ and each 
proton allows us to identify the proton from                
and thus reconstruct the neutron 

•  Angular distributions of second proton with respect to 
neutron are determined  

• Monte Carlo simulations will be used to obtain the 
effective analysing power   

• First results on neutron polarisation transfer weighted 
by the effective analysing power were determined 

�d ! pn

np ! pn

�d ! pn

Nicholas Zachariou 
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Background Subtraction

Probabilistic event Weighting

dij =
X
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were in non-reference coordinates. In the case of deuteron photodisintegration, the reference
coordinate corresponds to the square of the missing mass, m2

X

, since the functional form of
the signal and the background as a function of the missing mass squared is known a priori.
The non-reference coordinates can be any coordinates that are expected to affect the reference
coordinate distribution, i.e. photon energy, angles, etc. Since the photon energy is binned in
200-MeV wide bins, the variation of the missing-mass-squared distribution across a photon-
energy bin is quite small. For this reason, the non-reference coordinates used for the distance
measure in this study were the proton polar and azimuthal angles, ✓ and �.
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While the definition of distance requires taking the square root of d
ij

, doing so does not
change anything in the procedure. On the other hand, working with the distance measure,
as defined in Eq. (9), saves significant computational time that would otherwise be required
for the computation of a large number of square roots. For each event in the data set, e

i

,
the distances to all other events in the data set, d

ij

(j = 1, 2 . . . n), are computed. Then, a
pre-defined number of events, N

d

, is retained, which are closest to e
i

. These are referred
to as the closest neighbors to the event of interest e

i

, and they define a dynamic bin width.
For this analysis, 200 events were retained as closest neighbors (a study using 500 closest
neighbors was done with identical results on the background subtraction). Using the N

d

retained events, the distribution of their reference coordinate, ⇠
r

, was fitted to the known
signal and background shapes. The signal was described by a Gaussian,

g(m2
X

, A, µ, �) = Ae
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where A is the amplitude of the signal, and µ and � are the mean and standard deviation,
respectively. The background is due to several physics channels, such as � + d ! p+n+⇡0,
� + d ! p + p + ⇡�, and accidental events, making its exact shape hard to characterize.
Monte Carlo simulation have been performed by collaborators showing the dominant channels
for background contribution [2]. For this reason, the background shape was chosen as the
shape that resulted in the best fit of the missing-mass-squared distribution, which in this case
consisted of two exponentials,

b(m2
X

, A1, A2, B1, B2) = A1e
A2m

2
X

+ B1e
B2m

2
X . (11)

Other background shapes have been studied (1st through 4

th-order polynomials) without much
success in adequately fitting the missing-mass-squared distributions. In several kinematic
bins, the 3

rd-order polynomial resulted in good fits, however, the results for the background
contribution were unphysical (giving negative background contributions under the nominal
mass of the neutron).
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Monte Carlo simulation have been performed by collaborators showing the dominant channels
for background contribution [2]. For this reason, the background shape was chosen as the
shape that resulted in the best fit of the missing-mass-squared distribution, which in this case
consisted of two exponentials,

b(m2
X

, A1, A2, B1, B2) = A1e
A2m

2
X

+ B1e
B2m

2
X . (11)

Other background shapes have been studied (1st through 4

th-order polynomials) without much
success in adequately fitting the missing-mass-squared distributions. In several kinematic
bins, the 3

rd-order polynomial resulted in good fits, however, the results for the background
contribution were unphysical (giving negative background contributions under the nominal
mass of the neutron).
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Signal
Background

Calculate Q-value Qi  using m2X and determined parameters 

Qi =
g(m2

X [i], A, µ,�)

g(m2
X [i], A, µ,�) + b(m2

X [i], A1, A2, B1, B2)

their sum (as indicated by left hand side of Eq. (20)). It has been argued that the determination
of the beam-spin asymmetry is more reliable when using the ratio of polarized yields rather
than using yield ratios involving amorphous data partly due to the limited amount of amor-
phous data [74]. Typically, at CLAS, the amount of amorphous data is about five times less
than the amount of polarized data. Therefore, the asymmetry determined using the amorphous
data would result in large statistical uncertainties, and also in systematic errors due to changes
of the � acceptance of the detector over time. Since, the polarized data are evenly spread over
the run time and alternately collected, the estimated beam-spin asymmetry from polarized
yields would have smaller systematic errors that are due to changes in the � acceptance of the
detector over time.

From fitting the function

Y (�) =

A � 1 +

AB+1
B+1 2C cos[2(� � D)]

A + 1 +

AB�1
B+1 2C cos[2(� � D)]

. (22)

to the data, the following quantities could be extracted:

• A: Ratio of Para and Perp fluxes, F
R

• B: Ratio of Para and Perp polarizations, P
R

• C: Product of average polarization and asymmetry, ¯P⌃

sin[��]
��

• D: Offset of the photon polarization vector, �0

The statistical uncertainty of the polarized yield ratio, Y (�), is calculated by propagating
the uncertainties of N(�)

|| and N(�)

?, which follow a Poisson distribution (i.e. �N(�) =p
N(�)). It can be easily shown that the statistical uncertainty of Y (�) is given by

�Y =

2

(N ||
+ N?

)

2

q
N ||N?

(N ||
+ N?

). (23)

Equation (23) reflects the statistical uncertainty of the sample before any background
subtraction. The determination of the azimuthal asymmetry involved an event-by-event back-
ground subtraction based on the probabilistic event weighting [56], as discussed in Sec. 3.9.
The background-subtracted polarized-yield distributions were calculated by summing the
weights for all event in each kinematic bin as

N
||,?
signal

=

X

i

Q
||,?
i

. (24)

The uncertainty of the yield was then calculated as the sum of squares of the weight of each
event,

�2
stat

=

X

i

Q2
i

. (25)

The weight Q
i

for each event were determined by fitting the missing-mass-squared distri-
bution of the 200 closest neighbors (in bins of E

�

, ✓
c.m.

, and �) with the predefined signal and
background functions. The calculation of the uncertainty of Q

i

can be done by propagating
the uncertainties of the fit parameters, as

�
Q

i

=

X

jk

@Q
i

@p
j

Cov(i, j)
@Q

i

@p
k

, (26)
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Q-factor is used as weight for each event 

Figure 35 shows a fit of the signal plus background distribution of the 200 closest neigh-
bors for a specific event. The closest neighbors were chosen among the events that passed
the selection criteria mentioned before (trip flags, particle ID, photon selection, fiducial cuts),
in addition to a selection of the coherent photon peak (see Sec. 4), same orientation of the
photon polarization, and same electron-beam energy.

Figure 35: Missing-mass-squared distribution for the 200 closest neighbors of an event. The
red line shows the fit of the Gaussian (for the signal) and the two exponentials (for the back-
ground). The fit parameters were used to determine the probability, Q

i

, that the specific event
corresponds to a signal event.

The fit parameters, A, µ, �, A1, A2, B1, and B2, determined from the fit, were used
to identify the signal and background functions, G(m2

X

), and B(m2
X

), respectively. The
missing-mass-squared value of event e

i

, m2
Xi

, was used to calculate the values of the signal
and background of the event, G(m2

Xi

), and B(m2
Xi

), respectively. The Q-value of event e
i

was then calculated,

Q
i

=

G(m2
Xi

)

G(m2
Xi

) + B(m2
Xi

)

. (12)

As mentioned before, the Q-value of the event represents the probability that the event of
interest is a signal event.

This procedure was repeated for all events that pass the selection criteria discussed above,
separately for Para and Perp events. The Q-value was then used as a weighting function for
any distribution (missing mass squared, momentum, polar and azimuthal angle, etc.), to sep-
arate the signal from the background. Figure 36 shows the missing-mass-squared distribution
of the Para events in the photon energy bin 1.7 � 1.9 GeV that passed the selection criteria
(red distribution). The yellow distributions show events weighted with the Q-value (left), and
with the (1 � Q)-value (right), which represent the signal and the background, respectively.

Different dynamic bin widths were studied with consistent results. The dynamic bin of
200 closest neighbors was chosen since it corresponds to a bin width similar to that used
for the extraction of the azimuthal asymmetry. Specifically, for events in the lowest photon
energy bin (E

�

= 1.1 � 1.3 GeV), the dynamic bin size of 200 closest neighbors corresponds
to about 5

� in polar and azimuthal angles for events produced at forward angles, and to about
10

� for events produced at backward angles. On the other hand, for events in the highest
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Figure 36: Weighted missing-mass-squared distribution (yellow) for signal events (left) and
background events (right), compared to the unweighted missing-mass-squared distribution
(red). The distributions show events in the photon energy bin 1.7–1.9 GeV that pass all the
selection criteria.

photon-energy bin (E
�

= 2.1 � 2.3 GeV), the dynamic bin width of 200 closest neighbors
corresponds to about 10

� in polar and azimuthal angles for events produced at forward angles,
and to about 20

� for events produced at backward angles.
The calculation of the uncertainty of the Q-values from the fit is discussed in Sec. 5.3 and

in Appendix A. Proper calculation of the statistical uncertainty of ⌃ includes the propagation
of the Q-values uncertainties.

4 Photon Polarization
4.1 Overview

Linearly polarized photons in Hall B are produced using the coherent bremsstrahlung
technique [59]. The electron beam scatters coherently from a crystal radiator, resulting in
enhancement at specific energies over the ⇠ 1/E

�

photon-energy spectrum observed with an
amorphous radiator (carbon). A common practice for studying the photon-energy spectrum
of coherent bremsstrahlung is to plot the enhancement of the spectrum, which is defined as
the ratio of the spectrum obtained with the crystal radiator to that obtained with an amor-
phous radiator (see Fig. 37 for a typical enhancement plot). While this technique enhances
the coherent bremsstrahlung spectrum over the incoherent spectrum, it also eliminates any
channel-to-channel fluctuations caused by variations in the widths and efficiencies of the tag-
ger spectrometer (assuming that the detector efficiency were constant with time – more details
on this can be found in Sec. 4.4).

In g13b the photon polarization vector was rotated between two orthogonal orientations:
1) parallel to the Hall-B floor, referred to as Para, and 2) perpendicular to the Hall-B floor,
referred to as Perp. The orientation of the crystal lattice plane, which defined the photon
polarization vector, was adjusted by setting the azimuthal angle of the crystal. The relative
position of the main coherent peak on the photon-energy axis was set by adjusting the angle
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