Utilising the CLAS Start Counter as a Neutron Polarimeter

Nicholas Zachariou University of Edinburgh

Motivation

- Provide first measurement of the final-state neutron spin polarisation from $\gamma d \to pn$
- Unexpected results of proton polarisation indicated a new dibaryonic resonance state
 - supported by numerous recent experiments
- Allow investigation of the recently discovered resonant state d*(2380)
- A key expectation from this dibaryonic state is that both proton and neutron would show a high degree of polarization

Analysis Approach

Vertex Position

Beam line position

DOCA Vertex Position

Initial Vertex Positions n₁, n₂ Track vectors u₁, u₂ New Vertex Positions V_i=n_i+t_i u_i

 $\mathbf{u_i} \cdot \mathbf{\Delta V_i} = 0$

$$\frac{\gamma - p_0}{\gamma - p_1} \quad n - p_1$$

 $\Delta\beta$ cut

g13 experiment

Experiment run in 2006-2007 *LD*₂ Target 40 cm long Two photon polarisation settings Circular (g13a) Linear (g13b) 50 billion physics events

g13a

- Current: ~40 nA
- Two e-beam energies
 - 1.990 GeV
 - 2.655 GeV
- 20 billion events

g13b

- Current: ~10 nA
- Eight e-beam energies between 3.3 and 5.16 GeV
- Collected events for 6 photon-energy bins between 1.1 and 2.3 GeV
- 30 billion events

Skim

2-positively charged tracks only loose cut on proton mass +...

$$\Delta\beta = \beta_{meas} - \beta_{calc}$$

$$\beta_{calc} = \frac{p}{\sqrt{p^2 + m_{PDG}^2}}$$

$$\beta_{meas} = \frac{1}{c} \frac{L_{TOF}}{t_{TOF}}$$

Photon Selection

 $\Delta\beta$ cut

Photon Selection

 $\Delta\beta$ cut MM cut

Vertex Position

Missing Mass

 $\gamma d \to p X$

 $\gamma d \to p_1 X$ $\gamma d \to p_2 X$

 $\Delta\beta$ cut

miss_mass1[index_sc1[0]]:miss_mass3[index_sc1[0]]

400

Simulations

Analysis Photon Polarisation

• Use results from SAID on *a*

- Develop GEANT4 simulation of g13 target and ST to establish an effective α
 - GEANT4 accurately calculates energy losses and θ_{sc} distributions it does not include effects of polarised scattering
 - We will provide proper algorithms to introduce the polarised distributions to obtain the analysing power from simulation

Preliminary Results

Summary

- Determination of the neutron polarisation from deuteron photodisintegration utilising CLAS data (g13) is underway $\gamma d \rightarrow pn$
- Distance of closest approach between γ and each proton allows us to identify the proton from $\gamma d \rightarrow pn$ and thus reconstruct the neutron
- Angular distributions of second proton with respect to neutron are determined
- Monte Carlo simulations will be used to obtain the effective analysing power
- First results on neutron polarisation transfer weighted by the effective analysing power were determined

Utilising the CLAS Start Counter as a Neutron Polarimeter

- Determination of the neutron polarisation from deuteron photodisintegration utilising CLAS data (g13) is underway $\gamma d \rightarrow pn$
- Distance of closest approach between γ and each proton allows us to identify the proton from $\gamma d \rightarrow pn$ and thus reconstruct the neutron
- Angular distributions of second proton with respect to neutron are determined
- Monte Carlo simulations will be used to obtain the effective analysing power
- First results on neutron polarisation transfer weighted by the effective analysing power were determined

Analysis Background Subtraction M. Williams, CLAS Note 2007-013

 $\begin{aligned} & \text{Probabilistic event Weighting} \\ & d_{ij} = \sum_{k} \left[\frac{(\xi_k)_i - (\xi_k)_j}{r_k} \right]^2 \\ & \text{Signal} \quad g(m_X^2, A, \mu, \sigma) = A e^{-\frac{1}{2} \left(\frac{m_X^2 - \mu}{\sigma} \right)^2} \\ & \text{Background} \quad b(m_X^2, A_1, A_2, B_1, B_2) = A_1 e^{A_2 m_X^2} + B_1 e^{B_2 m_X^2} \\ & \text{Calculate Q-value } Q_i \text{ using } m_X^2 \text{ and determined parameters} \\ & Q_i = \frac{g(m_X^2[i], A, \mu, \sigma)}{g(m_X^2[i], A, \mu, \sigma) + b(m_X^2[i], A_1, A_2, B_1, B_2)} \end{aligned}$

$$\sigma_{Q_i} = \sum_{jk} \frac{\partial Q_i}{\partial p_j} Cov(i,j) \frac{\partial Q_i}{\partial p_k},$$

Q-factor is used as weight for each event

Photon Selection

Photon Selection

