CLAS Deep Processes Working Group Summary

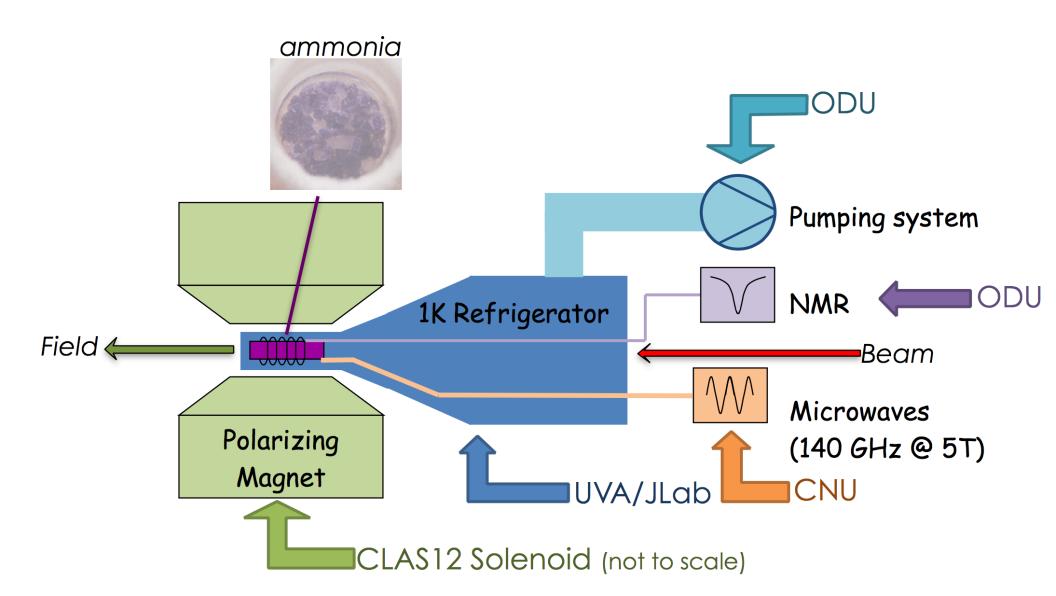
24 October 2015
CLAS Collaboration Meeting
Jefferson Lab
Keith Griffioen

Deep Processes Working Group Summary

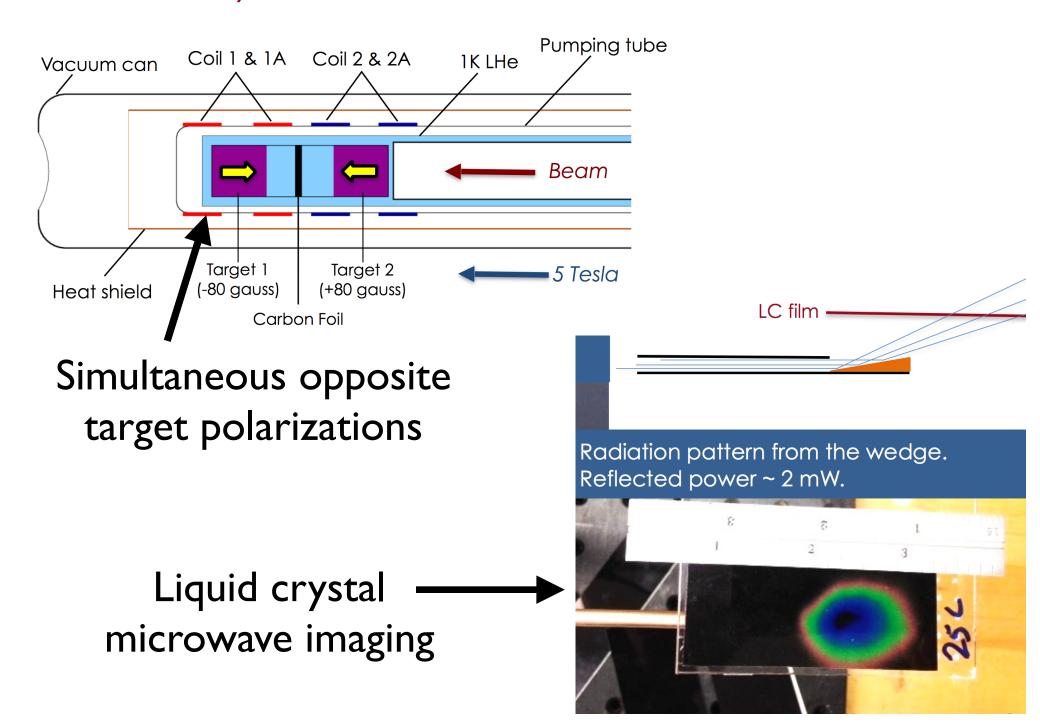
Oct 2015

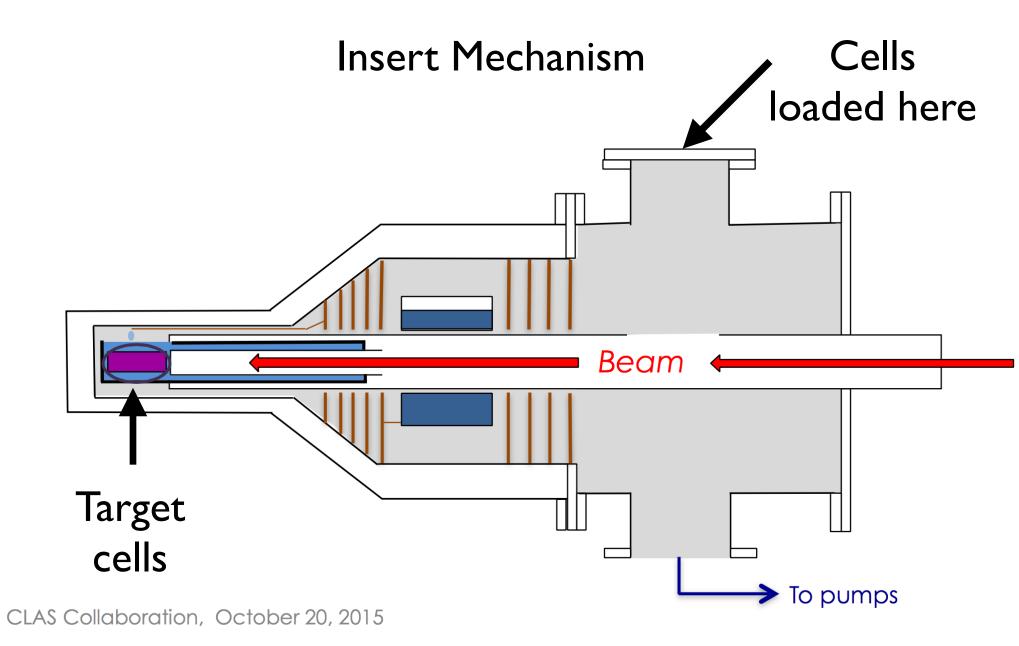
- 3 Analysis Notes currently under review
- 8 ad hoc reviews in progress or to start soon
- 4 submitted or published papers in 2015
- Several ongoing thesis analyses
- Several ongoing data-mining projects

Jun 2015


- 7 Analysis Notes currently under review
- 4 ad hoc reviews in progress or to start soon
- 4 submitted or published papers in 2015
- Several ongoing thesis analyses
- Several ongoing data-mining projects

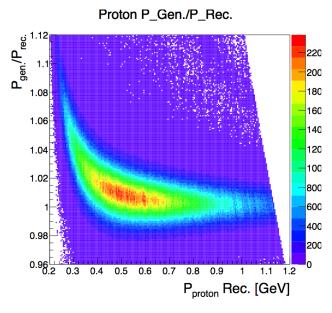
Author	Run Group	Title	WGC	ad hoc	Pub
l Albyrak et al.	gI2	Time-Like Compton Scattering	Begin: 150325 S Niccolai R Paremuzyan M Paolone <u>link</u>		
A Fradi et al.	e I -dvcs	Deeply Virtual Production of the p+ Meson on the Proton	Begin: 150316 S Pisano K Giovanetti V Kubarovsky link		
S Koirala S Kuhn et al.	eg I -dvcs	Measurement of Single and Double Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering on Proton and Deuteron	Begin:140929 M Mirazita P Bosted M Contalbrigo link End:151001		
P Bosted et al.	eglb	Spin Asymmetries in Exclusive pi+ and pi- electro- production from the Eg1b experiment	Begin: 140909 G Dodge X Zheng FX Girod link End: 150815	Begin:151007 Andrew Puckett Jacques Ball Vitali Baturin	

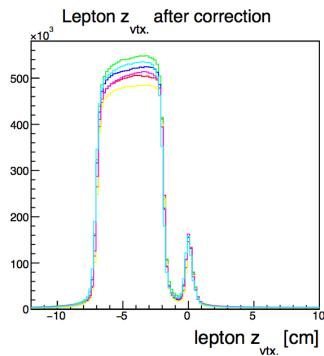

A. Kim et al.	elf	Beam Spin asymmetries of ep -> epŋ in the deep-inelastic regime	Analysis note unknown	Begin: I40905: Angela Biselli Kijun Park A Celentano
A. Kim et al.	eg I -dvcs	Single and Double Spin Asymmetries for Deeply Virtual Exclusive TTO Production on Longitudinally Polarized Proton Target with CLAS	Begin: 130912 M. Guidal S. Pisano A. Biselli <u>link</u> End: 140905	Begin: 150615 EVotier A Biselli M Holtrop End: 151016

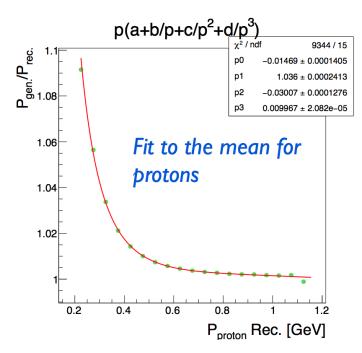

I Bedlinskiy V Kubarovsky et al.	e I -dvcs	Measurement of cross sections of η electroproduction in eldvcs experiment with CLAS	Begin:140710 R Dupre H Avagyan A Kim link End:151022		
S Pisano et al.	elf	Di-hadron Beam-Spin Asymmetry in SIDIS electro- production	Begin: I 40424 A Biselli B Raue S Kuhn link		
P Bosted et al.	eg I -dvcs	Spin Asymmetries in exclusive π ⁺ , π ⁰ , and π ⁻ electro- production from the egl-dvcs experiment	Begin: 140120 FX Girod S A Pereira P Stoler link End: 090214	Begin: 150903 FX Girod S Bueltmann Jixie Zhang	

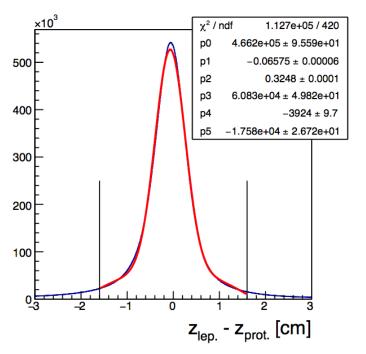
Chris Keith on the polarized NH₃/ND₃ target

<u>Sebastian Kuhn</u>: We can also use internal, superconducting coils to adjust the polarizing field for **two target samples**, and take data on **both polarizations simultaneously**.


UPDATE ON DVCS ANALYSIS FROM EI-6 DATA


A. Movsisyan, S. Pisano, H. Avakian



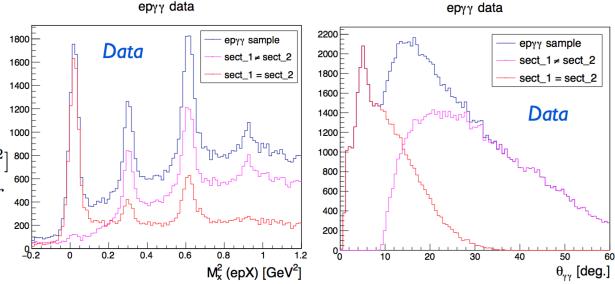

Improvements in DVCS via $ep(\gamma)\\ep\gamma\\ep\gamma(\pi^0)$

Improve: proton momentum, vertex resolution

$ep\gamma\gamma - sample$

$$W^2 > 4 \ [GeV^2]$$

 $P_{lepton} > 0.63884 \ [GeV]$


$$10 \times N_{pe} > 25$$

$$-t < 0.52 \ [GeV^2]$$

$$-0.05 < M_x^2(epX) < 0.09 \ [GeV^2]^{800}$$

Both photons in the same sector

$$P_{\pi} > 2.2 \; [GeV]$$

$ep \cup ep\gamma - sample$

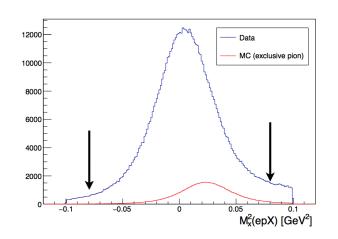
$$W^2 > 4 \ [GeV^2]$$

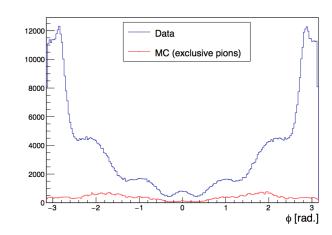
$$P_{lepton} > 0.8 \ [GeV]$$

$$10 \times N_{pe} > 25$$

$$-t < 0.52 \ [GeV^2]$$

$$-0.08 < M_x^2(epX) < 0.08 [GeV^2]$$

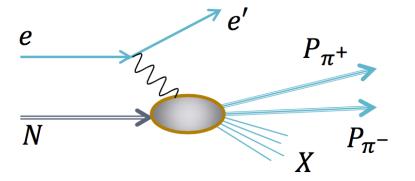

$$\theta_{\gamma_{calc.}} > 1.4^{\circ}$$

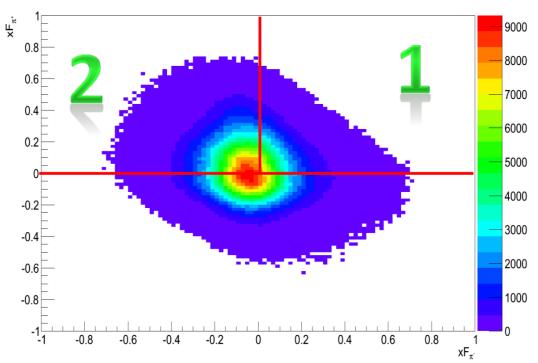

Background contribution estimated from MC:

$$N_{0,1\gamma}^{Data\,\pi^0}(x,Q^2,-t,\phi) = \underbrace{N_{\pi^0}^{Data}}_{N_{\pi^0}^{MC}} N_{0,1\gamma(\pi^0)}^{MC}(x,Q^2,-t,\phi)$$

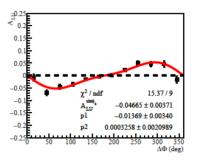
Normalization factor obtained from exclusive pion analysis:

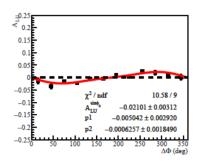
Exclusive channels

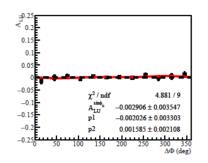


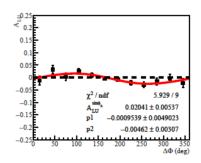

Back2back di-hadron production with CLAS 6-GeV data

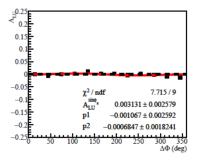
$$\mathcal{F}_{LU}^{\sin(\phi_1-\phi_2)} = \frac{|\boldsymbol{P}_{1\perp}||\boldsymbol{P}_{2\perp}|}{m_N m_2} \mathcal{C} \big[w_5 \hat{l}_1^{\perp h} D_1 \big]$$

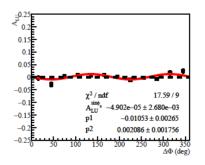

$$e p \rightarrow e \pi^+ \pi^- X$$

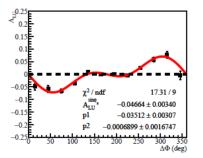


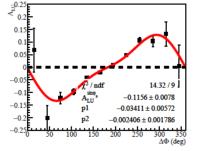


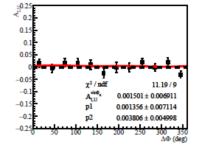

Back-to-back pion and proton: x_F -gap = $x_F(\pi^+) - x_F(p)$

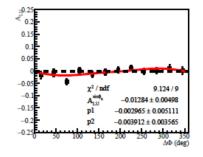


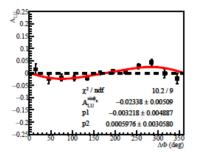


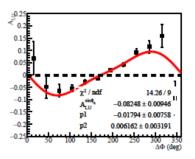


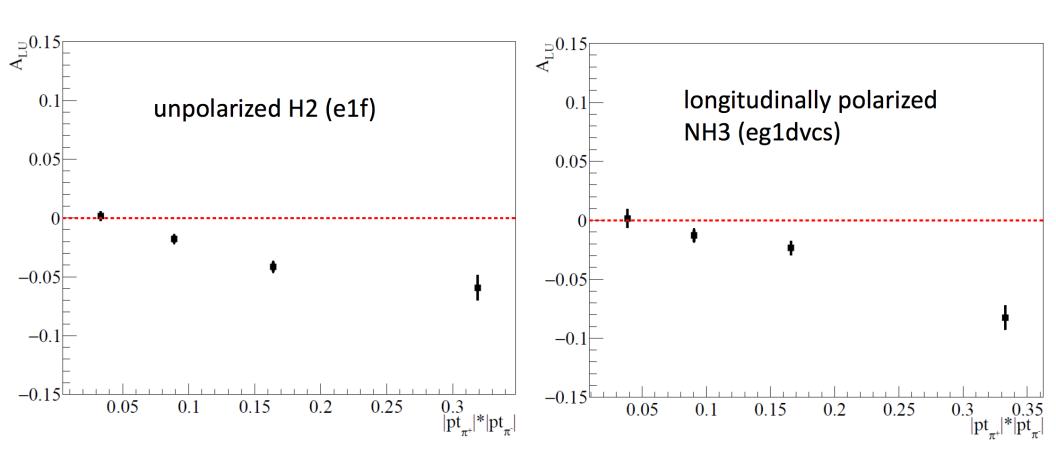

Back-to-back pion and proton: $|p_{T1}||p_{T2}|$ distribution





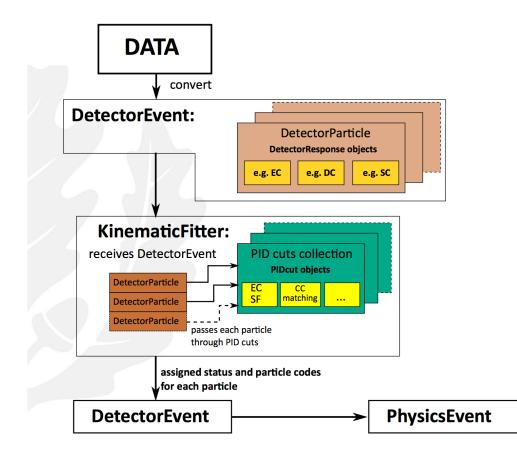



Back-to-back $ep \rightarrow ep\pi^+X$: $|p_{T1}||p_{T2}|$ on NH3 (eg1dvcs)

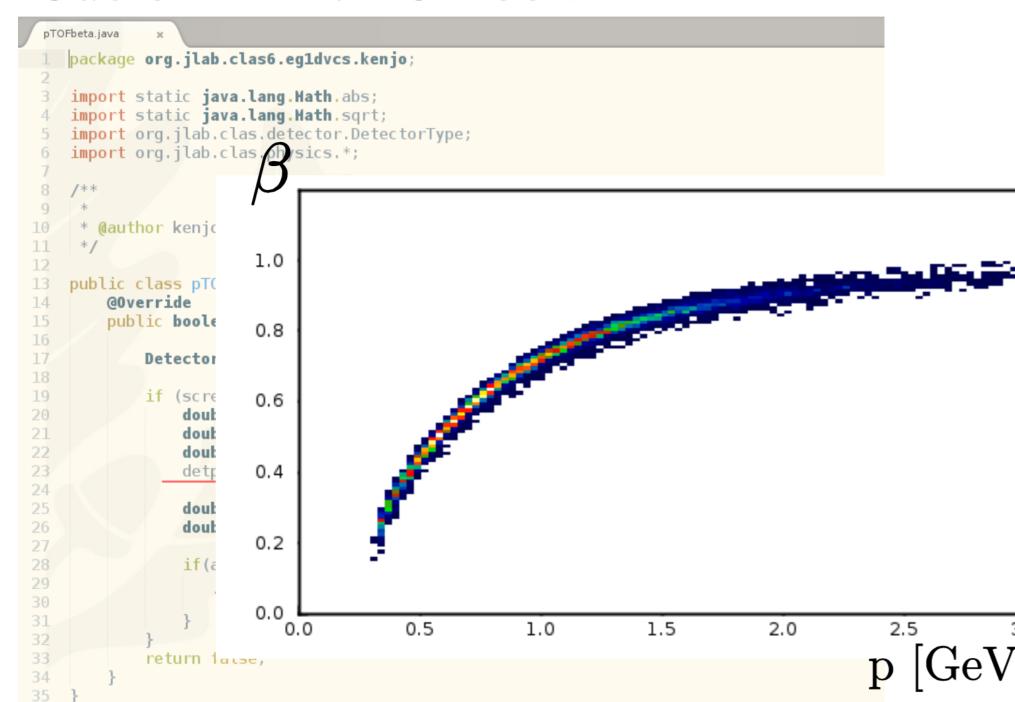


Beam Single Spin Asymmetries Similarities between p and A targets

Interesting new observables for TMD structure

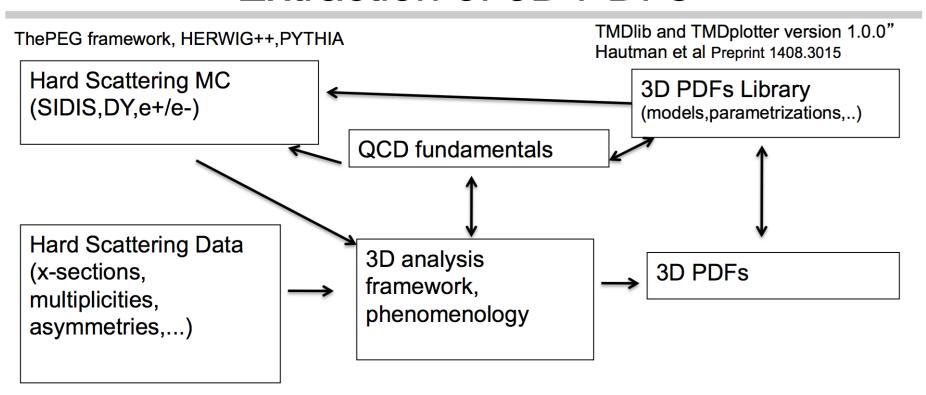


CLAS12 SOFTWARE APPLICATION to eg1-dvcs data

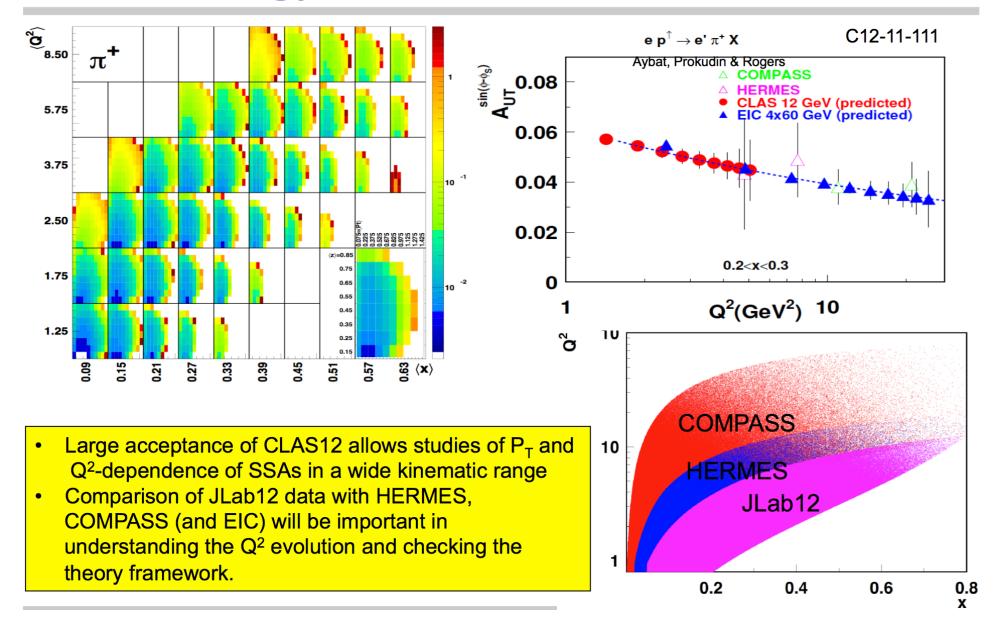

A. Kim

Custom PID: TOF beta

```
pTOFbeta.java
    package org.jlab.clas6.eg1dvcs.kenjo;
                                                     Simple, transparent,
    import static java.lang.Hath.abs;
                                                     shareable, common
   import static java.lang.Hath.sqrt;
   import org.jlab.clas.detector.DetectorType;
    import org.jlab.clas.physics.*;
                                                     analysis rubric for 6
    /**
                                                            and 12 GeV
     * @author kenjo
11
     */
12
    public class pTOFbeta implements IDetectorParticleProcessor{
       @Override
14
        public boolean processParticle(DetectorParticle detpart, DetectorEvent detevent) {
15
16
17
           DetectorResponse scres = detpart.getResponse(DetectorType.SC, 0);
18
           if (scres != null) {
19
               double rsc = scres.getPath();
20
21
               double tsc = scres.getTime();
               double beta = rsc/(tsc-detevent.getStartTime())/30;
22
               detpart.addProperty("beta before cut", beta);
23
24
25
               double mom=detpart.vector().mag();
               double dbeta = beta - mom/sqrt(mom*mom+0.985*0.985);
26
27
               if (abs (dbeta) < 0.05) {
28
                   detpart.addProperty("beta after cut", beta);
29
30
                   return true;
31
32
           return false;
33
34
```

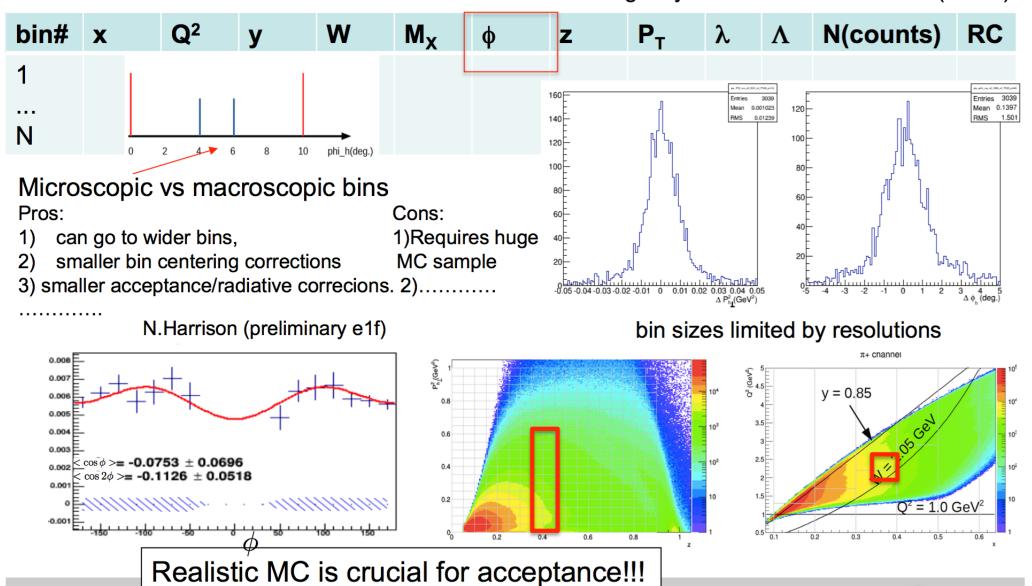

Custom PID: TOF beta

Development of a framework for TMD extraction from SIDIS data


Harut Avakian (JLab)

Extraction of 3D PDFs

Multiple data sets will feed into TMD determinations


CLAS12 A_{UT} with transverse proton target

Input data for analysis framework

Differential input (SIDIS):

M. Aghasyan et al arXiv:1409.0487 (JHEP)

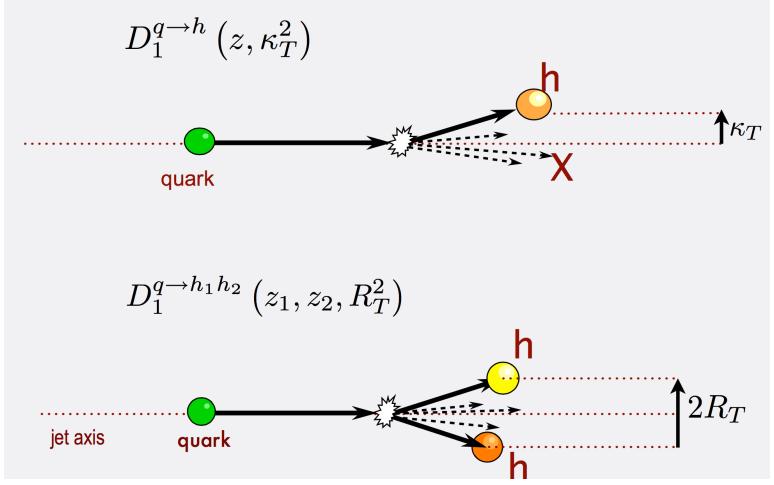
For precision studies of TMD(CFF) we need Theory:

- Extraction framework with controlled systematics (build in validation mechanism) to define requirements for the input
- Better understanding of higher twists (indispensable part of SIDIS analysis) is crucial for interpretation of SIDIS leading twist observables
- Better understanding of Radiative Corrections (in 5D)
- Understanding of kinematic corrections (finite phase space, target mass,...)
- Understanding of target fragmentation and correlations between hadrons in target and current fragmentation
- Understanding of relative scales, sizes and kinematic dependences of different contributions

Experiment:

Realistic MC description of measured distributions to minimize acceptance effects

Need a new MC generator "PYTHIA with spin-orbit correlations" to simulate azimuthal and spin correlations in final state hadronic distributions.


Proposal for topical collaboration: https://www.overleaf.com/2474182rxzqcg#/6457247/

PHENOMENOLOGY OF DIHADRON FRAGMENTATION FUNCTIONS AT CLAS12

Aurore Courtoy CINVESTAV/CONACyT (Mexico)

SIDIS-single hadron

SIDIS-dihadron

$$d\sigma \propto \sum_{q} [\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}] (x, z, P_{h\perp}^{2})$$

- TMD Fragmention and Distribution functions
- Convolution
- More Lorentz structures
- 3D "tomography"

$$d\sigma \propto \sum_{q} \mathrm{PDF}^{q}(x) \times \mathrm{DiFF}^{q}(z, M_{h})$$

- Collinear Distribution functions
- Simple product
- 1D "tomography"
- 2pion physics

DIHADRON SIDIS

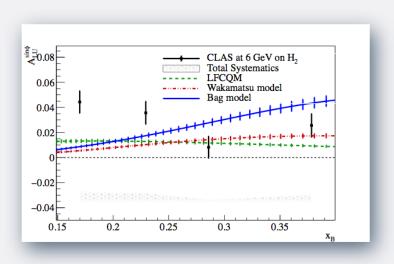
- Aut @ HERMES & COMPASS
 - @ CLAS12 & SoLID

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h; Q) = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x; Q^2) H_{1, sp}^{\triangleleft q}(z, M_h; Q^2)}{\sum_q e_q^2 f_1^q(x; Q^2) D_1^q(z, M_h; Q^2)}$$

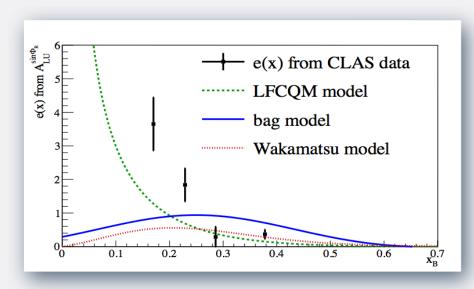
[Jaffe, Jin, Tiang, PRL 80] [Radici, Jakob & Bianconi, PRD65]

$$A_{LU}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x e^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$$

[Bacchetta & Radici, PRD69]



$$A_{UL}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x h_L^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$$


FIRST TRY EXTRACTION

Assume no dynamical higher-twist in the fragmentation part

In search of e(x)

leading-twist DiFFs known from PAVIA fit

$$A_{LU}^{\sin\phi_R}\left(x_i,m_{\pi\pi\,i,},z_i;Q_i,y_i\right) = -\frac{W(y_i)}{A(y_i)}\,\frac{M}{Q_i}\frac{x_i\left[\frac{4}{9}e^{u_V}(x_i,Q_i^2) - \frac{1}{9}e^{d_V}(x_i,Q_i^2)\right]\,n_{u,i}^{\uparrow}(Q_i^2)}{\sum_{q=u,d,s}e_q^2f_1^q(x_i,Q_i^2)}$$

[AC et al, arXiv:1405.7659]

Status report on SIDIS dihadron asymmetries from the eg1-dvcs experiment

•
$$e p \rightarrow e' \pi^+ \pi^- X$$

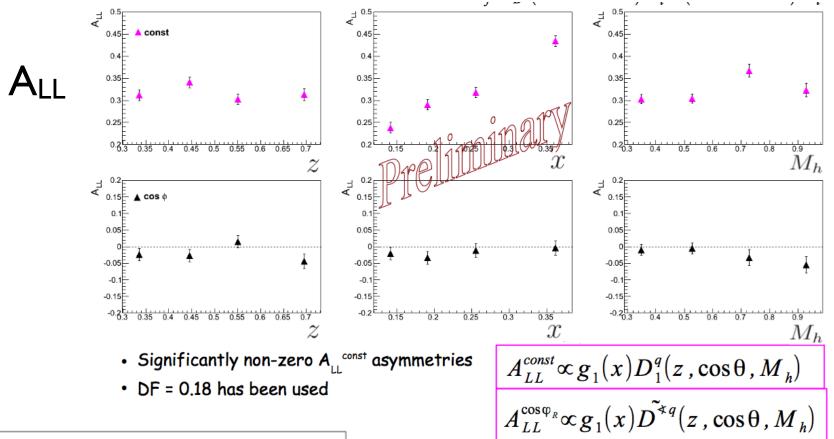
•
$$e p \rightarrow e' \pi^+ \pi^0 X \rightarrow e' \pi^+ \gamma \gamma X$$

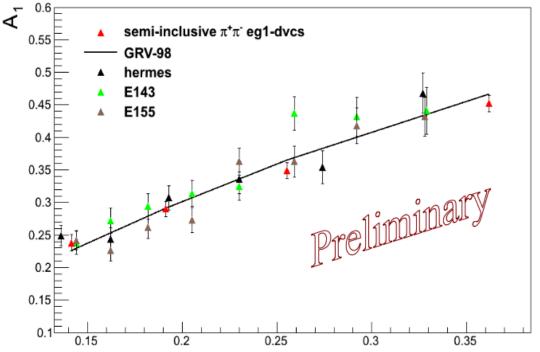
Sergio Anefalos Pereira (INFN - Frascati / University of Sao Paulo - USP)

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x e^q(x) H_1^{\lessdot q}(z, \cos\theta, M_h) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\lessdot q}(z, \cos\theta, M_h) \right],$$

$$F_{UL}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x h_L^q(x) H_1^{\lessdot q}(z, \cos\theta, M_h) + \frac{1}{z} g_1^q(x) \widetilde{G}^{\lessdot q}(z, \cos\theta, M_h) \right],$$

$$F_{LL} = x g_1^q(x) D_1^q(z, \cos\theta, M_h),$$


$$F_{LL}^{\cos\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \frac{1}{z} g_1^q(x) \widetilde{D}^{\lessdot q}(z, \cos\theta, M_h).$$


 $A_{III} \propto e(x) H_1^{*q}(z, \cos\theta, M_h)$ 0.035 0.035 _sin փ (NH֊) 0.03 0.03 sin ϕ (H₂) 0.025 0.025 0.02 0.02 0.02 0.015 0.015 0.015 0.01 0.01 0.01 0.005 0.005 0.005 0.15 0.35 M_h ▲ sin ♦ ▲ sin 2¢ 0.05 A_{LU} (top) Aul (bot) -0.05 -0.05 0.35 0.4 0.45 0.5 0.55 0.6 0.65 M_h \mathcal{X}

- · significantly non-zero asymmetries
- DF = 0.18 has been used

 $A_{UL} \propto h_L(x) H_1^{*q}(z, \cos\theta, M_h)$

- $\sin 2\phi$ compatible with zero
- gives access to the sub-leading twist PDF $h_i(x)$

ALL

ALL agrees with AI

- DPWG analyses are working their way through the system
- CLAS & CLAS 12 data are starting to be analyzed in a common framework
- Analysis/extraction frameworks are needed for SIDIS and DVCS