Spin density matrix elements in $\Lambda(1520)$ photoproduction

Will Levine

Carnegie Mellon University

October 22, 2015

- $\Lambda(1520)$ is $\frac{3}{2}^{-}$ baryon
- Decay modes
 - $N\bar{K}$ (pK^- , $n\bar{K}^0$): 45%
 - $\Sigma \pi (\Sigma^+ \pi^-, \Sigma^0 \pi^0, \Sigma^- \pi^+)$: 42%
 - Λππ: 10%

 $\bullet\,$ Narrow resonance ($\Gamma=15\,{\rm MeV})$ compared to other excited baryons

$\gamma p \rightarrow K^+ \Lambda(1520)$: Polarization observables

- Polarization of $\Lambda(1520)$ expressed by spin density matrix, measured by angular distribution of decay products
- Polarization reveals information about production mechanism
- Use Gottfried-Jackson (t-channel helicity) frame

$\gamma p \rightarrow K^+ \Lambda(1520)$: Polarization observables

• For decay $\frac{3}{2}^- \rightarrow \frac{1}{2}^+ 0^-$ with unpolarized target, unpolarized beam, parity-conserving production and decay: seven independent observables:

$$\begin{pmatrix} \frac{1}{2} - \rho_{\frac{1}{2}\frac{1}{2}} & \operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) & \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}-\frac{1}{2}}) & i\operatorname{Im}(\rho_{\frac{3}{2}-\frac{3}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & i\operatorname{Im}(\rho_{\frac{1}{2}-\frac{1}{2}}) & \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) - i\operatorname{Im}(\rho_{\frac{3}{2}-\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}\frac{$$

• Only three of these observables are measureable in decay distribution:

$$W(\theta, \phi) = \frac{3}{4\pi} \left\{ \left(\frac{1}{3} + \cos^2 \theta \right) \rho_{\frac{1}{2}\frac{1}{2}} + \sin^2 \theta \left(\frac{1}{2} - \rho_{\frac{1}{2}\frac{1}{2}} \right) - \frac{1}{\sqrt{3}} \sin 2\theta \cos \phi \operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) - \frac{1}{\sqrt{3}} \sin^2 \theta \cos 2\phi \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) \right\}$$

Jackson, High Energy Physics, Les Houches 1965

- Can generalize to case of polarized photon beam
 - Unpolarized beam: can measure 3 independent observables
 - Linearly polarized beam: 6 additional observables
 - Circularly polarized beam: 2 additional observables

Possible production mechanisms

- t-channel
 - K exchange
 - Pure scalar meson exchange implies $\rho_{\frac{1}{2}\frac{1}{2}} = \frac{1}{2}$, all other $\rho = 0$ (in GJ frame)
 - K^{*} exchange
- contact term
 - Needed to preserve gauge invariance
 - Absent for photoproduction off neutron
 - Contact term dominance could explain suppressed cross-section off neutron LEPS, PRL 103, 012001 (2009)
- s-channel
 - Prediction of $N^* \rightarrow K\Lambda(1520)$ decays from $N^*(2120)\frac{3}{2}^-$ (formerly called $N^*(2080)$), missing $\frac{1}{2}^-$ and $\frac{5}{2}^-$ states Capstick and Roberts, PRD 58, 074011 (1998)
- u-channel

- Nam and Kao predict decay angular distributions as function of production angle and energy PRC 81, 055206 (2010)
- Model includes:
 - Reggeized t-channel (K and K*) exchange
 - contact term
 - s-channel (ground-state N and $N^*(2120) \frac{3}{2}^-$) exchange
 - u-channel (ground-state Λ) exchange

Previous measurements of decay distributions

Barber et al (LAMP2), Z. Physik C 7, 17-20 (1980)

- LAMP2 (Daresbury): $E_{\gamma} = 2.8 - 4.8 \text{ GeV}$
- LEPS: $E_{\gamma} = 1.75 2.4$ GeV, 2 angular bins
- SAPHIR: 4 bins from $E_{\gamma} = 1.69 2.65 \text{ GeV}$
- All previous results averaged over wide energy bins, coarse (or no) binning in production angle

$\Lambda(1520)$ cross-section bump

- Bump in $\Lambda(1520)$ differential cross-section at $\sqrt{s} = 2.1 \,\mathrm{GeV}$
- Origin unknown
 - Resonance?
 - Other?

LEPS, PRL 104, 172001

CLAS, PRC 88, 045201

 $\gamma p \rightarrow K^+ \Lambda(1520)$

-

- g11a dataset (unpolarized)
- $\Lambda(1520) \rightarrow pK^-$ decay mode (pK^+K^- final state)
- Three independent topologies
 - pK^+K^- : minimal background
 - $pK^+(K^-)$: good statistics, good acceptance
 - $p(K^+)K^-$: access to forward production angles
 - Check systematics between channels
- Bin in 60 MeV wide \sqrt{s} bins (30 MeV for pK^+K^-)
- Fiducial, timing/PID cuts
- Kinematic fit with confidence level cut
 - $\gamma p \rightarrow K^+ K^- p$: 4C fit, 5% confidence level cut
 - 2-track topologies: 1C fit, 10% confidence level cut
- Cut out $IM(K^+K^-) < 1040$ MeV to remove ϕ photoproduction

 $\sqrt{s}=2340-2400\,{
m MeV}$, after kinematic fit, all cuts

- Need to separate $\Lambda(1520)$ events from non- $\Lambda(1520) \ pK^+K^-$ events
- Use Q-value method
 - Event-based method, assigns each event a probability ${\boldsymbol{Q}}$ of being signal-like
 - Use signal probability as weight in event-based maximum likelihood fit

Background fit results

 For SDME extraction, only consider events in the center of the peak (1500-1540 MeV). In missing K^- topology $\gamma p \rightarrow p K^+(K^-)$, signal events are identified by $MM(K^+) \approx 1.520$ and $MM \approx m_K$.

- Non- pK^- decay modes of $\Lambda(1520)$ can mimic this signal exactly:
 - $K^+\Lambda(1520) \rightarrow K^+\Sigma^+\pi^- \rightarrow K^+p(\pi^-\pi^0)$: 7% branching fraction
 - $K^+\Lambda(1520) \rightarrow K^+\Sigma^0\pi^0 \rightarrow K^+\pi^0\Lambda\gamma \rightarrow K^+p(\pi^-\pi^0\gamma)$: 7% branching fraction
 - $K^+\Lambda(1520) \rightarrow K^+\Lambda\pi\pi \rightarrow K^+p(\pi^-\pi\pi)$: 6% branching fraction
- If missing mass $\approx m_K$, these other decays will look like pK^- decays and peak at the $\Lambda(1520)$ mass

 $\sqrt{s} = 2280 - 2310 \,\mathrm{MeV}$, 2-track, before kinematic fit

Monte Carlo indicates that background from non- $pK^- \Lambda(1520)$ 15% of size of signal

Q-value method

- For each event, calculate probability that given event is signal (based on mass distribution of nearest neighbors)
- Use signal probability as weight in event-based maximum likelihood fit
- 2-stage background subtraction
 - **Q**-value fit to determine probability of missing K^- : Q_1
 - Do not use kinematic fit
 - Discriminate on MM
 - Determine probability that an event pK^+K^- vs. non- pK^+K^-
 - **2** Q-value fit to determine probability of $\Lambda(1520)$: Q_2
 - Discriminate on $MM(K^+)$
 - Cut on kinematic fit confidence level before Q-value fit
 - Input events weighted by Q_1 results into fit 2
 - Determine probability of ${\cal K}^+\Lambda(1520)\to p{\cal K}^+{\cal K}^-$ event as product of $Q_1\,Q_2$

$\gamma ho ightarrow ho K^+(K^-)$ Background subtraction: stage 1

Q-value fit, discriminate based on missing mass:

$\gamma p \rightarrow p K^+(K^-)$ Background subtraction: stage 2

Feed results of first fit into second fit (only use events that look like pK^+K^-):

Differential cross section comparison

 $\gamma p \rightarrow K^+ \Lambda(1520)$

三日 のへの

(日) (周) (三) (三)

$$W(\theta, \phi) = \frac{3}{4\pi} \left\{ \left(\frac{1}{3} + \cos^2 \theta\right) \rho_{\frac{1}{2}\frac{1}{2}} + \sin^2 \theta \left(\frac{1}{2} - \rho_{\frac{1}{2}\frac{1}{2}}\right) - \frac{1}{\sqrt{3}} \sin 2\theta \cos \phi \operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) - \frac{1}{\sqrt{3}} \sin^2 \theta \cos 2\phi \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) \right\} \right\}$$

What we measure is not the true decay distribution, $W(\rho, \vec{x})$, but decay distibution times acceptance: $W(\rho, \vec{x})\eta(\vec{x})$ (ρ is the spin density matrix, \vec{x} is the kinematics of the reaction, η is acceptance).

Construct a PDF for probability of detecting event with kinematics \vec{x} given SDM ρ :

$$\mathcal{P}(
ho, ec{x}) = rac{W(
ho, ec{x})\eta(ec{x})}{\int W(
ho, ec{x}')\eta(ec{x}')\,dec{x}'}$$

Denominator is easy to calculate using Monte Carlo method:

$$\mathcal{N}(\rho) = \int \mathcal{W}(\rho, \vec{x}') \eta(\vec{x}') \, d\vec{x}' = C \sum_{i \in accepted} \mathcal{W}(\rho, \vec{x}_i)$$

Construct likelihood

$$L \propto \prod_{i \in data} rac{W(
ho, ec{x}_i)}{N(
ho)}$$

Maximize L to find best values of ρ

Will Levine (CMU)

Spin density matrix: ρ_{11}

Will Levine (CMU)

Spin density matrix: ρ_{31}

Will Levine (CMU)

Spin density matrix: ρ_{3-1}

- Three different topologies have reasonable agreement
- Statistical errors through bootstrap method
- Estimate of systematic uncertainties from spread of values between topologies
- ρ_{31} consistent with 0 everywhere
- No strong energy dependence

Spin density matrix elements vs. E

All topologies averaged

 $\gamma p \rightarrow K^+ \Lambda(1520)$

-

- Spin density matrix elements extracted for $\gamma p
 ightarrow {\cal K}^+ \Lambda(1520)$
- Three topologies studied: pK^+K^- , $p(K^+)K^-$, $pK^+(K^-)$
- Reasonable agreement between topologies
- A few irregularities remain

Backup slides

< 67 ▶

I= nan

Need to input functional form of $MM(K^+)$ to do background fit:

Breit-Wigner w/ mass-dependent width, convoluted with Gaussian. Quadratic background.

Timing cuts

2-track timing cuts based on Biplab Dey's ϕ analysis (pK + (K-))

(a)

B Dey thesis

-

315

Q-value method

Choose kinematic variable, M, whose distribution can be described by a sum of background and signal functions:

$$F(M,\vec{\alpha}) = S(M,\vec{\alpha}) + B(M,\vec{\alpha})$$

where $\vec{\alpha}$ is a set of unknown parameters, *S* is the signal distribution (e.g. Breit-Wigner), *B* is the background distribution (e.g. polynomial) For each event *i*, find *N* nearest neighbors, with distance to event *j* as:

$$d_{ij} = \sum_{k} \left[rac{ heta_k^i - heta_k^j}{R_k}
ight]^2$$

where $\vec{\theta}$ are kinematic variables other than M (e.g. $\cos \theta_{\text{production}}$, $\cos \theta_{\text{decay}}$), R_k is range of θ_k Fit M distribution of nearest neighbors to F to determine $\vec{\alpha}_i$. Calculate signal probability:

$$Q_i = \frac{S(M_i, \vec{\alpha_i})}{S(M_i, \vec{\alpha_i}) + B(M_i, \vec{\alpha_i})}$$

Will Levine (CMU)

two-track vs three-track

Blue is accepted Monte Carlo weighted by full fit to decay angular distribution.

$\Lambda(1520)/\phi$ overlap

- ϕp and $K^+ \Lambda(1520)$ can decay to the same final state $(K^+ K^- p)$, overlap in phase space
- Interfering background
- Hard cut on K^+K^- mass
- No overlap at higher energies
- No overlap in 3-track (no acceptance in overlap region)

Will Levine (CMU)

Combine pK^- , $\Sigma\pi$, and $\Lambda\pi\pi$ MC sample, perform background fit (stage 1):

2-track, before acceptance corrections

Extracted signal decay distribution matches pK^{-} -only distribution

Background subtraction: MC

Combine pK^- , $\Sigma\pi$, and $\Lambda\pi\pi$ MC sample, perform background fit (stage 1):

2-track, before acceptance corrections

Extracted signal decay distribution matches pK^- -only distribution

Background subtraction: MC

Combine pK^- , $\Sigma\pi$, and $\Lambda\pi\pi$ MC sample, perform background fit (stage 1):

2-track, before acceptance corrections

Extracted signal decay distribution matches pK^- -only distribution

Background subtraction: data

Check that the background subtraction doesn't classify ϕ events as non- $p {\cal K}^+ {\cal K}^-$

-

ϕ_{GJ} Decay Distributions

What about ϕ_{GJ} ? Irregular acceptance makes difficult to compare.

Some deviation from flat distribution

$K^+\Lambda(1520)$ - ϕp coupled-channel effects

- $K^+\Lambda(1520)$ intermediate state studied in $\gamma p \rightarrow \phi p$
 - Proposed to explain bump in $\gamma p \rightarrow \phi p$ cross-section near $K\Lambda(1520)$ threshold
 - Ozaki et al, PRC 80, 035201 (2009)
 - Ryu et al, arxiv:1212.6075
- Understanding $K^+\Lambda(1520)$ production mechanism may help understanding of ϕ photoproduction

Non- $pK^- \Lambda(1520)$ decays: Monte Carlo

Simulate various $\Lambda(1520)$ decay modes (in proportion to branching ratios), apply cuts, kinematic fit to select missing K^- :

• Contamination from non- $pK^- \Lambda(1520)$ decays is 15% of true signal