

Towards the Electromagnetic Transition Form Factor of the η^{\prime} meson with g12 and CLAS12

22 October 2015 Hadron Spectroscopy Working Group

Michael C. Kunkel Forschungszentrum Jülich GmbH IKP-1

Transition Form Factors

Michaela Schever, Michael C. Kunkel, Susan Schadmand, Jim Ritman;

Institut für Kernphysik, Forschungszentrum Jülich

Motivation:

- Transition form factors provides insight into the meson charge radius, $\langle r \rangle.$
- Ratio of η/η' form factors provides information on η/η' mixing angle.
- For $\boldsymbol{\omega}$ there is a discrepancy between the measurement and the VMD model.
- The η form factor is needed to interpret the muon g-2 experiment.

Goal: Measuring transition form factors

ω Transition Form Factor

Status of η' charge radius

Current BESIII and CLAS data sets do not have enough statistics to determine which		
theoretical model fits the $\eta' \rightarrow$ charge radius		

	$\langle \mathrm{r} \rangle$	Number of events
BESIII (η′→γe+e−)	1.60 ± 0.17(stat) ± 0.08(sys) GeV ⁻² [1]	864
CELLO (η′→γμ+μ−)	1.7 ± 0.4 GeV ⁻² [2]	75
CLAS (η'→γe+e−)	TBD	89

Dispersion	1.53 ^{+0.15} -0.08 GeV ⁻²	
ChPT	1.6 GeV ⁻²	
VMD	1.45 GeV ⁻²	

Current statistical error cannot discern the correct theoretical model

[1]M. Ablikim et al., Phys.Rev. D92 (2015) 012001 [2]R. I. Dzhelyadi et al., Phys. Lett. B 88, 379 (1979)

CLAS collaboration meeting - HSWG

 $\eta' \rightarrow \gamma ee$: analysis

- lepton skim MK: IsLepG7_g12.root
- cuts:

(1)	pip_lsLepG7==1 && pim_lsLepG7==-1	. g7 leptons (CC&EC cut)
(2)	abs(nin Beta -1) < 0.05 & abs(nim Beta -1) < 0.05	ToF electron candidates
(4)	MM2P>=0.75 && MM2P<=1.	MMp : eta' mass window
(5)	MM2PEpEm<0.01 && MM2PEpEm>-0.01	MMpee : massless or no missing
	particle	
(6)	MEPEpEm>0.2	MEpee : missing particle (has energy)
(7)	abs(pip_vx*pip_vx+pip_vy*pip_vy)<4.	vertex cut for positron
(8)	abs(pim_vx*pim_vx+pim_vy*pim_vy)<4.	vertex cut for electron

- g12 fiducial cuts
- event efficiency
- q-factor signal extraction

evaluate <u>smooth background</u> event-by-event

359 event candidates
 82 events (signal weight)
 full g12 beam energy range

$\eta' \rightarrow \gamma ee : M_{ee}$ distribution

evaluate <u>in-peak background</u> via invariant mass distribution

sole background candidate: external conversion in the target

symbols:	data (signal weight)
filled:	$\eta' \rightarrow \gamma ee$ simulation
dotted:	$\eta' \rightarrow \gamma \gamma$ simulation
solid:	summed simulations

fit to data, range (0.,0.1) FCN=0.298654 FROM MIGRAD STATUS=CONVERGED 34 CALLS 35 TOTAL EDM=3.39438e-020 STRATEGY= 1 ERROR MATRIX ACCURATE

 EXT PARAMETER
 STEP
 FIRST

 NO.
 NAME
 VALUE
 ERROR
 SIZE
 DERIVATIVE

 1
 p0
 9.90865e+003
 4.62091e+003
 1.92653e+000
 4.30050e-014

 2
 p1
 3.77484e+005
 6.29736e+004
 3.20771e+000
 4.02354e-015

rel BR = p0/p1 = 0.0262492 +- 0.013001 (fit errors)

BESIII (2.13 +- 0.09(stat) +- 0.07(sys)) x 1e-2

next step: kinematic fit improved missing mass cuts will affect large-mass end

$\eta' \rightarrow \gamma ee : M_{ee}$ distribution

EXT PARAMETERSTEPFIRSTNO.NAMEVALUEERRORSIZEDERIVATIVE1 p09.24417e+0034.60182e+0031.79231e+000 -2.07859e-0132 p13.45819e+0056.21834e+0042.99290e+000 -1.93127e-014

rel BR = p0/p1 = 0.0267312 +- 0.0141485 (fit errors)

BESIII (2.13 +- 0.09(stat) +- 0.07(sys)) x 1e-2

next step: kinematic fit improved missing mass cuts will affect large-mass end

cross check: angular distribution

signal events -> cross section dsigma/dcosthcm in limited beam energy range compare to g11

.... not yet

CLAS12 e⁺e⁻ pair physics

Electromagnetic structure of mesons and baryons. Currently we are benchmarking the η'→γe+e− decay Here is a list of initial physics to be studied			
Meson	Baryon		
η′→γe+e-	(∆→Ne+e-)		
ω→π ⁰ e+e-	Λ→ne+e− Λ(1520)→Λe+e−		
$J/\psi \rightarrow \pi^0 e + e -$	$\Sigma^0 \rightarrow \Lambda e + e - \Sigma^+ \rightarrow pe + e - I$		

CLAS $\xi(e^+e^-)/\xi(\pi+\pi-)$ can be range $10^5 - 10^{11}$ CLAS e^+e^- efficiency (ϵ) range 1 - 10^{-2}

CLAS12 η' Measurement

Using CLAS12 simulation and reconstruction software (GEMC & coatjava-1.0)

CLAS12 η' Acceptance

e⁺e⁻ Acceptance

Exclusive $\gamma p \rightarrow e^+e^-\gamma p$

12

CLAS12 n' Rates

Exclusive $\gamma p \rightarrow e^+e^-\gamma p$

Within 100 days of beam-time CLAS12 can measure the η' transition form factor with a statistical uncertainty ~1% CLAS collaboration meeting - HSWG

Summary

- Current statistics of CLAS data enables measurements of transition form factor for ω but not η '
- The η' branching ratio measurement is consistent with recent BESIII result
 - Cross check of angular distribution underway
- Future CLAS12 data:
 - Hadron transition form factors.
 - Branching ratios of meson conversion decays.
 - Fundamental properties of hadrons
- Currently seeking applicant for PhD for η transition form factor measurement

END

$\eta' {\rightarrow} \gamma \textbf{ee}: \textbf{MM}_{\textbf{p}} \text{ distribution}$

