CLAS12-MesonEx 00 Tagged J/ψ photo-production 0000000

Photoproduction of Hidden-Charm Pentaquark in CLAS12 - MesonEx

Andrea Celentano

INFN-Genova

CLAS HSWG Meeting

Introduction			
Hidden-charm pentaquark search	CLAS12-MesonEx	Tagged J/ψ photo-production	Conclusions

- 2 CLAS12-MesonEx
- 3 Tagged J/ψ photo-production

Hidden-charm pentaquark search ●○○ CLAS12-MesonEx

Tagged J/ψ photo-production

Conclusions

LHCB hidden-charm pentaquark

LHCb recently announced¹the discovery of two exotic structures in the J/ψ - p channel: $P_c(4380)$ and $P_c(4450)$, by measuring the decay $\Lambda_b^0 \rightarrow pJ/\psi K^-$.

They claimed that the minimum quark content is $c\bar{c}uud$.

Widths:

- P_c(4450): Γ = 39 MeV
- P_c(4380): Γ = 205 MeV

Quantum numbers (PWA most probable solution)

- $P_c(4450): J_P = \frac{5}{2}^-$
- P_c (4380): $J_p = \frac{3}{2}^+$

Altough: "Acceptable solutions are also found for additional cases with opposite parity"

¹Phys. Rev. Lett. **115**, 072001 (2015)

Hidden-charm pentaquark search ○●○ CLAS12-MesonEx

Tagged J/ψ photo-production

Conclusions 0

Hidden-charm pentaquark photo-production

Any p- J/ψ resonance would apper as an s-channel resonance in the direct photo-production reaction: $\gamma p \rightarrow p J/\psi$. $M_R = \sqrt{s} = M^2 + 2E_{\gamma}M$ $M_R \simeq 4.4 \text{GeV} \rightarrow E_{\gamma} \simeq 9.8 \text{GeV}$

"Naive" cross-section estimate ingredients²:

- Breit-Wigner *elastic* cross-section
- Vector Meson Dominance

$$\sigma(W) = \frac{2J+1}{4} \frac{4\pi}{k_i \cdot k_f} \frac{B_{in} B_{out} \Gamma^2 / 4}{(W - M_R)^2 + \Gamma^4 / 4}$$

Vector Meson Dominance:

 $B_{in} = (e/f_V)^2 B_{out} \rightarrow B_{in} = B_{out} \cdot 7.37 \cdot 10^4$ (from $J/\psi \rightarrow e^+e^-$ decay)

$$\sigma_{max} \simeq \frac{2J+1}{4} B_{out}^2 \cdot 2.26 \mu \text{barn}$$

²M. Karlineray and J.L. Rosnerbz, arXiv:1508.01496

Hidden-charm pentaquark search
oo●CLAS12-MesonEx
ooTagged J/ψ photo-production
oo00000Conclusions
oHidden-charm pentaquark tagged photo-production in CLAS12

Actually, J/ψ tagged photo-production in CLAS12!

Strategy:

- 11 GeV e^- beam impinging on LH_2 target
- Proton and / or J/ψ decay products measured in CLAS12
- Low-angle scattered e^- measured in the Forward Tagger

Advantages-disadvantages compared to untagged photo-production:

- Higher \sqrt{s} resolution
- Initial state is known: measure p and/or J/ψ decays only to tag the reaction
- Lower rate

Hidden-charm pentaquark search
 ∞ CLAS12-MesonEx
 \bullet Tagged J/ψ photo-production
 ∞ Conclusions
 \circ Low Q^2 electron-scattering: kinematics

Kinematic variables:

- $\nu = E E'$
- $Q^2 = 4EE'\sin^2(\theta_e/2)$
- $W^2 = M^2 + 2M\nu Q^2$

Virtual photon polarization:

•
$$\varepsilon_T = [1 + 2\frac{Q^2 + \nu^2}{Q^2} \tan^2(\theta_e/2)]^{-1}$$

• $\varepsilon_L = \frac{Q^2}{2} \varepsilon_T$

Hidden-charm pentaquark search 000

CLAS12-MesonEx

Tagged J/ψ photo-production

Conclusions 0

The Forward Tagger Facility

3 components:

- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	<u> </u>
	Range
$E_{e'}$	0.5 - 4.5 GeV
$\theta_{e'}$	$2.5^{o} - 4.5^{o}$
$\phi_{e'}$	$0^{\circ} - 360^{\circ}$
E_{γ}	6.5 - 10.5 GeV
P_{γ}	70 - 10 %
Q^2	$0.01 - 0.3 \ { m GeV}^2 \ (< Q^2 > 0.1 \ { m GeV}^2)$
W	3.6 - 4.5 GeV

7/16

Hidden-charm pentaquark search 000

CLAS12-MesonEx

Tagged J/ψ photo-production

Conclusions 0

The Forward Tagger Facility

3 components:

- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	Range
$E_{e'}$	0.5 - 4.5 GeV
$\theta_{e'}$	$2.5^{o} - 4.5^{o}$
$\phi_{e'}$	$0^{\circ} - 360^{\circ}$
E_{γ}	6.5 - 10.5 GeV
P_{γ}	70 - 10 %
Q^2	$0.01 - 0.3 \ { m GeV}^2 \ (< Q^2 > 0.1 \ { m GeV}^2)$
W	3.6 - 4.5 GeV

CLAS12-MesonEx Tagged J/ψ photo-production Conclusions •000000

Detector acceptance evaluation: kinematics

MC events generated trough an ad-hoc model, that includes:

Non-resonant the t-channel exchange of a

Pomeron trajectory.

- Parameters tuned to reproduce existing data at $E_{\gamma} > 13$ GeV
- $\sigma_{NB}(E_{\gamma} = 10 \text{ GeV}) = 0.2 \text{ nbar}^3$

Resonant s—channel production,

 $\gamma^* p \to X \to J/\psi p$

- Focus on the narrower P_c state
 J^P = (3/2)⁻, altough this has limited impact on results
- Single free parameter: $\sigma_B = (BR)^2 \cdot 1.3 \,\mu$ barn

Events are generated with final state e^- within FT acceptance.

Only considering the decay $J/\psi \rightarrow e^+e^-$ (BR $\simeq 0.06$): CLAS12 not optimized for μ identification

 $^{^3}$ Compatible with the range predicted in arXiv:0010.343, where a QCD-inspired calculation was performed.

Hidden-charm pentaquark search	CLAS12-MesonEx	Tagged J/ψ photo-production 000000	Conclusions
000	00		0
Background model			

 $\bullet\ t-{\rm channel}$ exchange of a Pomeron-like Regge Trajectory

$$M_{\lambda_{\gamma},\lambda_{p}}^{\lambda_{\psi},\lambda_{p'}} = \left(\frac{s}{s_{0}}\right)^{\alpha_{P}(t)} \beta_{\lambda_{\gamma},\lambda_{\psi}} \beta_{\lambda_{p},\lambda_{p'}} e^{-b|t|}$$

• Parity conservation:

- Assumptions:
 - s-channel helicity conservation
 - No spin-flip at proton vertex
- Result:

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s} \frac{1}{k_i^2} \beta_0^2 \left(\frac{s}{s_0}\right)^{2\alpha_P(t)} e^{-2b|t|}$$

- α_P : Pomeron trajectory
- β : Regge coupling
- e^{-b|t|}: "effective" form factor

Hidden-charm pentaquark search	CLAS12-MesonEx	Tagged J/ψ photo-production 0000000	Conclusions
000	00		O

Signal model

- s channel resonance J^P production: $M_{\lambda_{\gamma},\lambda_{p'}}^{\lambda_{\psi},\lambda_{p'}}(s,t) = (2J+1)M_{\lambda_{\gamma},\lambda_{p}}^{\lambda_{\psi},\lambda_{p'}}(s)D_{\lambda_{\gamma}-\lambda_{p},\lambda_{\psi}-\lambda_{p'}}^{J*}$
- Breit-Wigner approximation for $M_{\lambda_{\gamma},\lambda_{p}}^{\lambda_{\psi},\lambda_{p'}}(s)$:

$$M_{\lambda_{\gamma},\lambda_{p}}^{\lambda_{\psi},\lambda_{p'}}(s) = -\frac{g_{I}^{\lambda_{\gamma},\lambda_{p}}g_{F}^{\lambda_{\psi},\lambda_{p'}}}{s-M^{2}+i\sqrt{s}\Gamma}$$

• Parity conservation:

- Assumptions:
 - Vector-meson dominance: $g_I^{\lambda_a,\lambda_b} = (e/f)g_F^{\lambda_a,\lambda_b}$ $(e/f = 2.7\cdot 10^{-4})$
 - Minimal $L-{\rm value}$ for the $X\to J\psi\ p$ decay
- Result:

$$\sigma(s) = \frac{8\pi}{3} \frac{s}{k_i k_f} (e/f)^2 \frac{\Gamma^2 B R_F^2}{(s-M^2)^2 + \Gamma^2 s}$$

 $g_{I/F}^{\lambda_{\gamma},\lambda_{p}}$: initial/final state coupling

 $\begin{array}{rcl} g_{F}^{1,-} = g_{F}^{-1,+} & = & \sqrt{3}g^{1,+} \\ g_{F}^{0,+} = g_{F}^{0,-} & = & \sqrt{2}g^{1,+} \end{array}$

Hidden-charm	pentaquark	search

Detector acceptance evaluation: results

MC events projected on CLAS12 via FASTMC. Assumptions:

- CLAS12-CD acceptance for e^+/e^- is 0
- Only consider events with both e^+ and e^- from J/ψ in CLAS12-FD
- No combinatorial background included yet

Two reconstruction strategies:

- All final state particles measured
- Only e^+ and e^- measured, p missing

000	00	0000000	0
Invariant mass resolution			

p- J/ψ invariant mass measured only trough the low-angle e^- detected in FT.

Compared to the untagged measurement, the detection of the low-angle electron in the Forward Tagger permits to map the $p\text{-}J/\psi$ line shape with a higher resolution.

Hidden-charm pentaquark search	CLAS12-MesonEx	Tagged J/ψ photo-production 0000000	Conclusions
000	00		0

Magnetic field effects

The effect of changing the intensity and polarity of the torus magnetic field was evaluated via FASTMC.

Results:

- e^+e^- invariant mass (i.e. J/ψ mass) and missing mass (i.e. proton mass) increase with decreasing the B field
- No effect on these observables by inverting the magnetic field
- Modest effect of the magnetic field intensity on the acceptance
- By inverting the field polarity (negatives outbending), the acceptance for the e^+e^-p topology drops to $\simeq 9\%$ at $W=4.4~{\rm GeV}$
- The W resolution does not depend on the torus field configuration.

14/16

Hidden-charm	pentaquark	search

CLAS12-MesonEx Tagged J/ψ photo-production Conclusions oo oooooo● o

Rates

Low Q^2 limit \rightarrow the unpolarized reaction cross-section is: $d\sigma(\Omega', E') = \sigma_{\gamma}(\nu) \cdot d\Gamma$

Virtual photon flux:

$$d\Gamma(\Omega', E') = \frac{\alpha}{4\pi^2} \frac{E'}{E_0} \frac{\nu}{Q^2} \left[\frac{(2E_0 - \nu)^2}{\nu^2} + 1 \right] d\Omega' \, dE'$$

Integration over FT acceptance ($2.5^{\circ} \div 4.5^{\circ}$):

$$d\Gamma(W) \simeq 1.1 \cdot \frac{\alpha}{4\pi} \frac{\nu}{E_0^2} \left[\frac{(2E_0 - \nu)^2}{\nu^2} + 1 \right] \frac{W}{M_p} dW$$

At W = 4.4 GeV, integrating over $\Delta W = 20$ MeV:

 $\Gamma = 1.23 \cdot 10^{-5} \rightarrow 1/10 \; \mathrm{x} \; \mathrm{untagged}$

Total number of events (case $P_c(4450)$, $\Gamma = 39$ MeV):

$$R_{gen} = \mathcal{L} \cdot \Gamma \cdot \sigma_0^\gamma \simeq 2 \cdot 10^5 \cdot \sigma_0^\gamma$$
 events / day / μ barn

 $R_{meas}=R_{gen}\cdot BR_{J/\psi\to e^+e^-}\cdot \varepsilon\simeq 1.5\cdot 10^3\cdot \sigma_0^\gamma \text{ events }/\text{ day }/\text{ }\mu\text{barn}$

Hidden-charm pentaquark search	CLAS12-MesonEx	Tagged J/ψ photo-production	Conclusions
000	00		•
Conclusions			

- The reaction $\gamma^* + p \rightarrow pJ/\psi$ can be measured with the CLAS12+Forward tagger detector, tagging the final state electron
- Preliminary results from MC simulations are encouraging:
 - $\sigma_W \simeq 5$ MeV @ 4.4 GeV, independent from CLAS12 resolution
 - $\varepsilon \simeq 15\%$ for the $e^+e^-(p)$ topology
- This measurement is **complementary** to the untagged one: higher resolution, lower requirements on CLAS12, but lower statistics
 - Untagged measurement: discovery potential
 - Tagged measurement: precise measurement of the $p\text{-}J/\psi$ line-shape
- Further studies must be performed
 - Full MC simulation
 - Backgrounds evaluation