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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS

UT,p µ [4hu
1 �hd

1 ]H
^
1,u.

Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p
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� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
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[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p
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� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
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The Error Analysis:     the Monte Carlo approach
                                                       2nd order polynomial

Best fit central curve @2.4 GeV2

and standard 1σ error band

Soffer Bound @ 2.4 GeV2

1σ error band from replicas @2.4 GeV2
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                                                        some illustrations

Can we find “unforeseen” replica?



Monte Carlo Approach: 
                                                        some illustrations

Can we find “unforeseen” replica?

Χ2/dof

1.56557
1.42199
1.79911
2.07397
1.75523

Yes, here at 1GeV2
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FIG. 5. The unpolarized cross section d�0 at Q2 = 100 GeV2

as a function of z for the three bins 0.39  Mh  0.41, 0.79 
Mh  0.81, 0.99  Mh  1.01 GeV (from top to bottom).
Same notations as in the previous figure. The figure serves
only for illustration purposes. For the description of the ac-
tual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).

angles in the experimental acceptance, we will consider
their average values in each experimental bin. As such,
Eq. (7) corresponds to the experimental a

12R in Ref. [29].

It is convenient to define also the following quanti-

ties [25]

nq(Q
2) =

Z
dz dMh Dq

1

(z, Mh;Q
2)

n"

q(Q
2) =

Z
dz dMh

|R|
Mh

H^ q
1,sp(z, Mh;Q

2) .

(17)

Then, the Artru–Collins asymmetry can be simplified to

A(z, Mh;Q
2) = � hsin2 ✓

2

i
h1 + cos2 ✓

2

i hsin ✓ihsin ✓i

⇥ |R|
Mh

P
q e2

q H^q
1,sp(z, Mh;Q2)n"

q(Q
2)

P
q e2

q Dq
1

(z, Mh;Q2)nq(Q2)

⌘ � hsin2 ✓
2

i
h1 + cos2 ✓

2

i hsin ✓ihsin ✓i

⇥ |R|
Mh

P
q e2

q H^q
1,sp(z, Mh;Q2)n"

q(Q
2)

D(z, Mh;Q2)
,

(18)

where we understand that nq(Q2) = nq(Q2) (due to
Eqs. (11), (12)), n"

q(Q
2) = �n"

q(Q
2) (see the following

Eqs. (20), (21)), and, using again Eqs. (11) and (12), we
have defined

D(z, Mh;Q
2) =

5

9
Du

1

(z, Mh;Q
2)nu(Q

2)

+
1

9
Ds

1

(z, Mh;Q
2)ns(Q

2) +
4

9
Dc

1

(z, Mh;Q
2)nc(Q

2) .

(19)

Isospin symmetry and charge conjugation can be ap-
plied also to the polarized fragmentation into (⇡+⇡�)
pairs such that [11, 21, 25]

H^, u
1

= �H^, d
1

= �H
^, u
1

= H
^, d
1

, (20)

H^, s
1

= �H
^, s
1

= H^, c
1

= �H
^, c
1

= 0 . (21)

These relations should hold for all channels but for the
K0

S resonance. However, pion pairs produced in the K0

S
decay are in the relative s wave, and with our assump-
tions there are no p wave contributions to interfere with.
Therefore, we assume H^, q

1,sp ⇡ 0 for the K0

S channel, such
that Eqs. (20) and (21) are valid in general throughout
our analysis.
Using these symmetry relations, we can further manip-

ulate Eq. (18) and define

H(z, Mh;Q
2) = �h1 + cos2 ✓

2

i
hsin2 ✓

2

i
9

5

1

hsin ✓i hsin ✓i
⇥ D(z, Mh;Q

2)A(z, Mh;Q
2)

⌘ |R|
Mh

H^u
1,sp(z, Mh;Q

2)n"

u(Q
2) ,

(22)

where
Z

dz dMh H(z, Mh, Q2) = [n"

u(Q
2)]2 . (23)

Using symmetries for DiFFs:

4

its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D

1

.

A. The Monte Carlo simulation

We used a PYTHIA simulation [34] to study (⇡+⇡�)
pairs with momentum fraction z and invariant mass Mh

from e+e� annihilations at the Belle kinematics [35]. The
pair distribution should be described according to the
unpolarized cross section of Eq. (8) integrated in ✓

2

and
✓, since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dz dMh dQ2

=
4⇡↵2

Q2

X

q

e2

q Dq
1

(z, Mh;Q
2) . (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated lumi-
nosity L

MC

= 647.26 pb�1 corresponding to 2.194 ⇥ 106

events. The total number of produced pion pairs is
n

tot

= 1.040 ⇥ 106, approximately one pair every two
events. We use these numbers to normalize D

1

, but
the results for the Artru–Collins asymmetry (and, conse-
quently, for H^

1

/D
1

) are independent of the normaliza-
tion.

The counts of pion pairs are collected in a bidimen-
sional 40 ⇥ 50 binning in (z, Mh). The invariant mass
is limited in the range 0.29  Mh  1.29 GeV, the
lower bound being given by the natural threshold 2m⇡

and the upper cut excluding scarcely populated or fre-
quently empty bins. Each pion pair is required to have a
fractional energy z � 0.2 in order to focus only on pions
coming from the fragmentation process. To avoid large
mass corrections, we impose the condition

�h ⌘ 2Mh

zQ
⌧ 1 , (10)

which we in practice implement as �h  1/2.
For the fragmentation process q ! (⇡+⇡�)X in the

range 0.29  Mh  1.29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent chan-
nels can be cast in two main categories, three resonant
channels and a “continuum” (see the discussion around
Fig. 2 in Ref. [11]; see also Refs. [3–5, 38]):

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ⇢ resonance; it is the cleanest
channel and is responsible for a peak in the invari-
ant mass distribution at Mh ⇠ 776 MeV,

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ! resonance; it produces a
sharp peak at Mh ⇠ 783 MeV but smaller than the
previous one. However, the ! resonance has a large
branching ratio for the decay into (⇡+⇡�)⇡0 [39].
We include also this contribution after summing
over the unobserved ⇡0; it generates a a broad peak
roughly centered around Mh ⇠ 500 MeV,

• the production of (⇡+⇡�) pairs via the decay of the
K0

S resonance, which produces a very narrow peak
at Mh ⇠ 498 MeV,

• everything else included in a channel which for con-
venience we call “continuum” and we model as the
fragmentation into an “incoherent” pion pair.

The fragmentation via the ⌘ resonance also produces a
peak overlapping with the K0

S one (plus a smaller hump
at Mh ⇠ 350 MeV) but with less statistical weight.
Hence, we will neglect this channel and we will neglect
as well all other resonances which are not visible in the
PYTHIA output [11].

In summary, the behaviour of the fragmentation into
(⇡+⇡�) pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the ⇢, !, and K0

S resonances, and a chan-
nel that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q = u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch = cont, ⇢, !, K,
and for each flavor q = u, d, s, c, we parametrize
Dq

1,ch(z, Mh;Q2

0

) at the hadronic scale Q2

0
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ing inspiration from Refs. [11, 21, 25]. For (⇡+⇡�) pairs,
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The best fit of the Monte Carlo output at the Belle scale
shows compatibility with both conditions (11) and (12)
for all channels but for the K0

S ! (⇡+⇡�) decay, where
the choice Dd
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1,K is required. In general, we

choose Ds
1
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only in the z dependence.
The full analytic expression of Dq
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) can be
found in appendix A. Here, we illustrate the z and Mh de-
pendence of Du

1,⇢ as an example, since it displays enough
general features that are common to most of the other
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FIG. 5. The unpolarized cross section d�0 at Q2 = 100 GeV2

as a function of z for the three bins 0.39  Mh  0.41, 0.79 
Mh  0.81, 0.99  Mh  1.01 GeV (from top to bottom).
Same notations as in the previous figure. The figure serves
only for illustration purposes. For the description of the ac-
tual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).

angles in the experimental acceptance, we will consider
their average values in each experimental bin. As such,
Eq. (7) corresponds to the experimental a

12R in Ref. [29].

It is convenient to define also the following quanti-

ties [25]

nq(Q
2) =

Z
dz dMh Dq

1

(z, Mh;Q
2)

n"

q(Q
2) =

Z
dz dMh

|R|
Mh

H^ q
1,sp(z, Mh;Q

2) .

(17)

Then, the Artru–Collins asymmetry can be simplified to
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where we understand that nq(Q2) = nq(Q2) (due to
Eqs. (11), (12)), n"

q(Q
2) = �n"

q(Q
2) (see the following

Eqs. (20), (21)), and, using again Eqs. (11) and (12), we
have defined

D(z, Mh;Q
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(19)

Isospin symmetry and charge conjugation can be ap-
plied also to the polarized fragmentation into (⇡+⇡�)
pairs such that [11, 21, 25]

H^, u
1

= �H^, d
1

= �H
^, u
1

= H
^, d
1

, (20)

H^, s
1

= �H
^, s
1

= H^, c
1

= �H
^, c
1

= 0 . (21)

These relations should hold for all channels but for the
K0

S resonance. However, pion pairs produced in the K0

S
decay are in the relative s wave, and with our assump-
tions there are no p wave contributions to interfere with.
Therefore, we assume H^, q

1,sp ⇡ 0 for the K0

S channel, such
that Eqs. (20) and (21) are valid in general throughout
our analysis.
Using these symmetry relations, we can further manip-

ulate Eq. (18) and define
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(22)

where
Z

dz dMh H(z, Mh, Q2) = [n"

u(Q
2)]2 . (23)

Using symmetries for DiFFs:

4

its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D

1

.

A. The Monte Carlo simulation

We used a PYTHIA simulation [34] to study (⇡+⇡�)
pairs with momentum fraction z and invariant mass Mh

from e+e� annihilations at the Belle kinematics [35]. The
pair distribution should be described according to the
unpolarized cross section of Eq. (8) integrated in ✓

2

and
✓, since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dz dMh dQ2

=
4⇡↵2

Q2

X

q

e2

q Dq
1

(z, Mh;Q
2) . (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated lumi-
nosity L

MC

= 647.26 pb�1 corresponding to 2.194 ⇥ 106

events. The total number of produced pion pairs is
n

tot

= 1.040 ⇥ 106, approximately one pair every two
events. We use these numbers to normalize D

1

, but
the results for the Artru–Collins asymmetry (and, conse-
quently, for H^

1

/D
1

) are independent of the normaliza-
tion.

The counts of pion pairs are collected in a bidimen-
sional 40 ⇥ 50 binning in (z, Mh). The invariant mass
is limited in the range 0.29  Mh  1.29 GeV, the
lower bound being given by the natural threshold 2m⇡

and the upper cut excluding scarcely populated or fre-
quently empty bins. Each pion pair is required to have a
fractional energy z � 0.2 in order to focus only on pions
coming from the fragmentation process. To avoid large
mass corrections, we impose the condition

�h ⌘ 2Mh

zQ
⌧ 1 , (10)

which we in practice implement as �h  1/2.
For the fragmentation process q ! (⇡+⇡�)X in the

range 0.29  Mh  1.29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent chan-
nels can be cast in two main categories, three resonant
channels and a “continuum” (see the discussion around
Fig. 2 in Ref. [11]; see also Refs. [3–5, 38]):

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ⇢ resonance; it is the cleanest
channel and is responsible for a peak in the invari-
ant mass distribution at Mh ⇠ 776 MeV,

• the production of (⇡+⇡�) pairs in relative p wave
via the decay of the ! resonance; it produces a
sharp peak at Mh ⇠ 783 MeV but smaller than the
previous one. However, the ! resonance has a large
branching ratio for the decay into (⇡+⇡�)⇡0 [39].
We include also this contribution after summing
over the unobserved ⇡0; it generates a a broad peak
roughly centered around Mh ⇠ 500 MeV,

• the production of (⇡+⇡�) pairs via the decay of the
K0

S resonance, which produces a very narrow peak
at Mh ⇠ 498 MeV,

• everything else included in a channel which for con-
venience we call “continuum” and we model as the
fragmentation into an “incoherent” pion pair.

The fragmentation via the ⌘ resonance also produces a
peak overlapping with the K0

S one (plus a smaller hump
at Mh ⇠ 350 MeV) but with less statistical weight.
Hence, we will neglect this channel and we will neglect
as well all other resonances which are not visible in the
PYTHIA output [11].

In summary, the behaviour of the fragmentation into
(⇡+⇡�) pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the ⇢, !, and K0

S resonances, and a chan-
nel that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q = u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch = cont, ⇢, !, K,
and for each flavor q = u, d, s, c, we parametrize
Dq

1,ch(z, Mh;Q2

0

) at the hadronic scale Q2

0

= 1 GeV2 tak-

ing inspiration from Refs. [11, 21, 25]. For (⇡+⇡�) pairs,
isospin symmetry and charge conjugation suggest that
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The best fit of the Monte Carlo output at the Belle scale
shows compatibility with both conditions (11) and (12)
for all channels but for the K0

S ! (⇡+⇡�) decay, where
the choice Dd

1,K 6= Du
1,K is required. In general, we

choose Ds
1

to di↵er from Du
1

only in the z dependence.
The full analytic expression of Dq

1,ch(z, Mh;Q2

0

) can be
found in appendix A. Here, we illustrate the z and Mh de-
pendence of Du

1,⇢ as an example, since it displays enough
general features that are common to most of the other
channels. The function Du
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Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as

 k# #
"
P"
h

z
;
z$k2 ! ~k2T%

2P"
h

; kxT; k
y
T

#
; (1)
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2P"
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; 0; 0

#
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2P"
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) j ~Rj sin" cos$R; j ~Rj sin" sin$R

#
; (3)

where1

 j ~Rj # Mh

2

!!!!!!!!!!!!!!!!!!!
1" 4m2

!

M2
h

s
; (4)

and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
h

2z
! z

k2 ! j ~kT j2
2

; (6)
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P1
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S S
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two−hadron plane
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l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression

d7'

d(dMh
2d)Rdzdxdyd)S

!*
a
ea
2
2+2

4,Q2y
! A$y % f 1

a$x %D1
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2
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"S! T""R! T"
Mh

sin$)R#)S%h1
a$x %H1

!a$z ,( ,Mh
2%# .

$24%

For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
OT

sin()R#)S)$y ,x ,z ,Mh
2%

!
$ d)Sd)Rd( sin$)R#)S%d

7'OT

$ d)Sd)Rd(d7'OO
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a
ea
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*
a
ea
2 f 1
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a$z ,( ,Mh

2%

,

$25%

which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become
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0!%Mh

!2
,

Mh

!2
, 0, 0& ,

R0!%!M 1
2#"R! "2"!M 2
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1
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$26%

where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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Knowledge on DiFFs leads to h1(x, Q2)

Semi-inclusive production of two hadrons [19,21] offers
an alternative way to access transversity, where the chiral-
odd partner of transversity is represented by the DiFF H!

1
[47], which relates the transverse spin of the quark to the
azimuthal orientation of the two-hadron plane. This func-
tion is at present unknown. Very recently, the HERMES
collaboration has reported measurements of the asymmetry
containing the product h1H!

1 [48]. The COMPASS col-
laboration has also presented analogous preliminary results
[49]. In the meanwhile, the BELLE collaboration is plan-
ning to measure the fragmentation functions H!

1 in the near
future [50,51].

In this context, it seems of great importance to devise a
way to model DiFF. From the theoretical side, this can help
in understanding what are the essential building blocks and
mechanisms involved in dihadron fragmentation. It can
also provide guidance for fits to data and further phenome-
nological studies. From the experimental side, a model
could be useful to study the effects of cuts and acceptance,
to estimate the size of observables in different processes
and kinematical regimes. Our work is not the first one in
this direction [21,47,52]. The model presented here is close
to the one discussed in Ref. [47]. However, for the first time
we are able to fix the parameters by comparing our unpo-
larized DiFF D1 with the output of the PYTHIA event
generator [53] tuned for HERMES [54]. Then, without
introducing extra parameters, we make predictions for
the polarized DiFF H!

1 and the related SSA involving the
transversity distribution h1.

The paper is organized as follows. In Sec. II, we review
the basic formalism of DiFF and of SIDIS cross section for
two-hadron production. In Sec. III, we describe our model
for the fragmentation of a quark into two unpolarized
hadrons and give analytic results for DiFF calculated in
this model. In Sec. IV, we fix the parameters of the model
by comparing it to the output of the PYTHIA event gen-
erator tuned for HERMES kinematics. In Sec. V, we show
numerical predictions for the DiFF and for the above-
mentioned SSA in the kinematics explored by the
HERMES [48] and COMPASS collaborations [49].
Finally, in Sec. VI we draw some conclusions.

II. BASICS OF DIHADRON FRAGMENTATION
FUNCTIONS

Dihadron fragmentation functions are involved in the
description of the fragmentation process q ! !!!"X.
The quark has momentum k. The two pions have masses
m! # 0:140 GeV, momenta P1 and P2, respectively, and
invariant mass Mh (considered to be much smaller than the
hard scale of the process, e.g., the virtuality of the photon,
Q, in SIDIS). We introduce the vectors Ph # P1 ! P2
and R # $P1 " P2%=2. We describe a 4-vector a as
&a"; a!; ax; ay', i.e. in terms of its light cone components
a( # $a0 ( a3%=

!!!
2

p
and its transverse spatial components.

We introduce the light cone fraction z # P"
h =k

" and the
polar angle ", being the angle between the direction of P1
in the pair’s center of mass and the direction of Ph in the
lab frame [55], so that the relevant momenta can be written
as
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and $R is defined later in Eq. (15) (see also Fig. 1). It is
useful to compute the scalar products

 Ph * R # 0; (5)

 Ph * k # M2
h

2z
! z

k2 ! j ~kT j2
2

; (6)

 

Ph

Ph

P2

P1

RT

S S
φ

φ
R

two−hadron plane

scattering plane

l l’

q

FIG. 1 (color online). Angles involved in the measurement of
the transverse single-spin asymmetry in deep-inelastic produc-
tion of two hadrons in the current region.

1Note that there is a misprint in the expressions for j ~Rj in
Eq. (27) of Ref. [55] and in Eq. (23) of Ref. [28].
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plitude times the conjugate of a different scattering ampli-

tude !12". However, for conciseness we follow the notation

of Ref. !2". The polarization of the incident beam is indicated
with #e and

A$y %!1"y#
y2

2
, B$y %!1"y , C$y %!y$2"y %.

$23%

In Eq. $22%, the indices (&1 ,&1!) refer to the chiralities of the
entering quarks and identify each submatrix, while (&2 ,&2!)
refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indices

in Eq. $21%, we get the expression

d7'

d(dMh
2d)Rdzdxdyd)S

!*
a
ea
2
2+2

4,Q2y
! A$y % f 1

a$x %D1
a$z ,( ,Mh

2%

##e#
C$y %

2
g1
a$x %D1

a$z ,( ,Mh
2%

#B$y %
"S! T""R! T"
Mh

sin$)R#)S%h1
a$x %H1

!a$z ,( ,Mh
2%# .

$24%

For an unpolarized beam (#e!0, indicated with O) and a
transversely polarized target (#!0, indicated with T), Eq.
$24% corresponds to Eq. $10% of Ref. !6" after integrating over
all transverse momenta. The following SSA can be built:

A
OT

sin()R#)S)$y ,x ,z ,Mh
2%

!
$ d)Sd)Rd( sin$)R#)S%d

7'OT

$ d)Sd)Rd(d7'OO

!"S! T"
B$y %

A$y %

*
a
ea
2h1

a$x %$ d(
"R! T"
2Mh

H1
!a$z ,( ,Mh

2%

*
a
ea
2 f 1

a$x %$ d(D1
a$z ,( ,Mh

2%

,

$25%

which allows us to isolate the transversity h1 at leading twist.

Apart from the usual variables x , y , z , the only other vari-

able to be measured is the angle )R#)S . Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angle )S-") l
S with respect to

the scattering plane; therefore, we have )R-)R
S") l

S and

)R#)S-)R
S"2) l

S !6".
The asymmetry described in Eq. $25% is the most general

one at leading twist for the case of two-hadron production

when an unpolarized lepton beam scatters off a transversely

polarized target. No assumptions are made on the behavior of

the fragmentation functions. However, as we shall see in the

next section, it is useful and desirable to understand how

different partial waves contribute to the above fragmentation

functions.

III. PARTIAL-WAVE EXPANSION FOR THE

TWO-HADRON SYSTEM

If the invariant mass Mh of the two hadrons is not very

large, the pair can be assumed to be produced mainly in the

relative s-wave channel, with a typical smooth distribution,

or in the p-wave channel with a Breit-Wigner profile !32".
Therefore, it is useful to expand Eq. $16%—or equivalently
Eq. $19%—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

the kinematics in the c.m. frame of the two-hadron system.

Then, the leading-twist projection for the quark-quark cor-

relator . is conveniently expanded deducing a more detailed

structure than Eq. $19%. A set of new bounds is derived and
the corresponding expression for the cross section is dis-

cussed.

In the c.m. frame the emission of the two hadrons occurs

back to back. The direction identified by this emission forms

an angle / with the direction of Ph in the target rest frame

$see Fig. 3%. In this frame, the relevant variables become

Ph
0!%Mh

!2
,

Mh

!2
, 0, 0& ,

R0!%!M 1
2#"R! "2"!M 2

2#"R! "2"2"R! "cos /

2!2
,

!M 1
2#"R! "2"!M 2

2#"R! "2#2"R! "cos /

2!2
,

"R! "sin / cos)R ,"R! "sin / sin)R& ,
(!

2R"

Ph
"

!
1

Mh

$!M 1
2#"R! "2"!M 2

2#"R! "2"2"R! "cos /%,

$26%

where

FIG. 3. The hadron pair in the c.m. frame; / is the c.m. polar
angle of the pair with respect to the direction of Ph in the target rest

frame.
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SIDIS production of pion pairs 

Chiral-odd DiFF: 

Distribution of hadrons inside the jet 
is related to the

Direction of the transverse polarization of the fragmenting quarks


