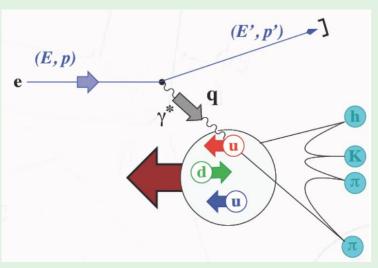


Semi-Inclusive DIS with a longitudinally polarized neutron



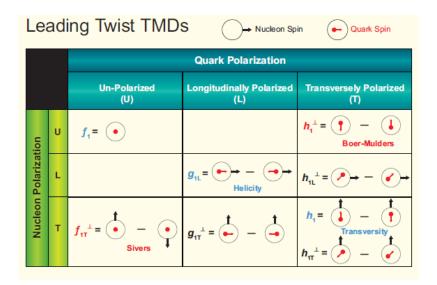
Transverse Momentum Distributions through SemiInclusive DeepInelastic Scattering

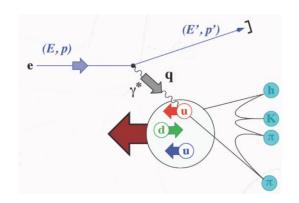
3D description of the nucleon structure in the momentum space → full 3D dynamics of the partons

Transition from hadronic to partonic degrees of freedom → Fragmentation Functions & Hadronization mechanisms

hidden strangeness in the nucleon

Access to quark-gluon-quark correlations through higher-twist observables




Transverse Momentum Dependent PDFs&FFs

8 leading-twist TMDs

They depend on the parton longitudinal fraction x and on its transverse momentum $k_T \rightarrow full 3D dynamics$

Fragmentation Functions → transition from partonic to hadronic degrees of freedom

q/H	U	L	Т
U	D_1		H_1^{\perp}
L		G_{1L}	$\operatorname{H}_{1L}^{\bot}$
Т	H_1^{\perp}	G_{1T}	$\boldsymbol{H_1}$, $\boldsymbol{\mathrm{H}}_{1T}^{\perp}$

- o different hadrons in the final state provide information on the hadronization of different flavors
- measurements on DIFFERENT TARGETS are essential to perform flavor separation and access TMDs of individual flavors

Single-hadron SIDIS cross-section

Depending on the degrees of freedom active in the process, various TMD&&FF can be accessed:

Unpolarized

Longitudinally

Tranversely pol. target

 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ $\left\{ \int F_{\rm UU,T} + \epsilon F_{\rm UU,L} \right.$ $+\sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{\mathrm{UU}}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{\mathrm{UU}}^{\cos(2\phi)}$ + $\lambda_l \left[\sqrt{2\epsilon (1 - \epsilon)} \sin(\phi) F_{LU}^{\sin(\phi)} \right]$ + S_L $\left[\sqrt{2\epsilon (1+\epsilon)} \sin(\phi) F_{\text{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\text{UL}}^{\sin(2\phi)}\right]$ + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{LL}^{\cos(\phi)} \right]$ + S_T $\left[\sin\left(\phi - \phi_S\right) \left(F_{\mathrm{UT,T}}^{\sin\left(\phi - \phi_S\right)} + \epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi - \phi_S\right)}\right)\right]$ $+\epsilon \sin{(\phi + \phi_S)}F_{\mathrm{UT}}^{\sin{(\phi + \phi_S)}} + \epsilon \sin{(3\phi - \phi_S)}F_{\mathrm{UT}}^{\sin{(3\phi - \phi_S)}}$ $+\sqrt{2\epsilon(1+\epsilon)}\sin(\phi_S)F_{\text{UT}}^{\sin(\phi_S)}$ $+\sqrt{2\epsilon(1+\epsilon)}\sin(2\phi-\phi_S)F_{\mathrm{UT}}^{\sin(2\phi-\phi_S)}$ + $S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} \right]$ $+\sqrt{2\epsilon(1-\epsilon)}\cos(\phi_S)F_{\rm LT}^{\cos(\phi_S)}$ $+\sqrt{2\epsilon(1-\epsilon)}\cos(2\phi-\phi_S)F_{LT}^{\cos(2\phi-\phi_S)}$

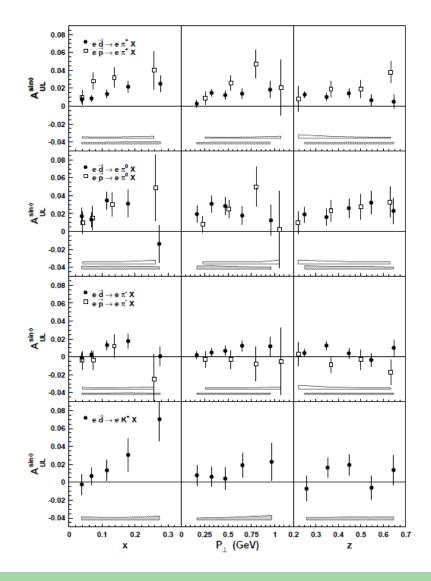
18 structure functions appear in the cross-section

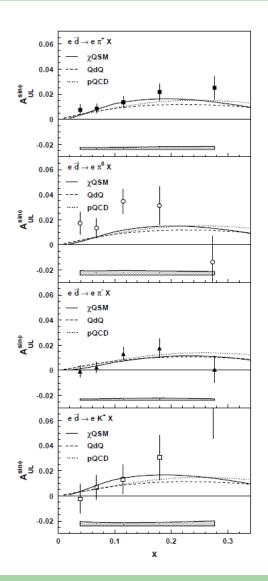
$$F_{ij,K} \propto DF \otimes FF$$

JLab TMD program explored the different terms:

- **Unpolarized contributions** (Hall-B, Hall-C)
- Longitudinally-polarized contributions (Hall-B)
- Transversely-polarized contributions (Hall-A)

Longitudinal Target-Spin Asymmetry on deuterium


- Measurements on deuterium are available from HERMES and COMPASS, need to be (further) extended to VALENCE QUARK region
- \circ low- Q^2 important to test the presence of possible evolution effects on TMDs & FFs
- CLAS12 will allow to explore both pions & kaons channel → see M. Contalbrigo's contribution
- Combining ND3 and NH3 measurement will allow to perform a flavor separation on the TMDs: compatible precision on hydrogen and deuterium is important to access flavor's TMDs → see A. Courtoy's contribution
- o many semi-inclusive processes (single-hadron, di-hadron, back-to-back SIDIS), with the specific observables they granted access to, will benefit of additional ND3 days → see H. Avakian's contribution

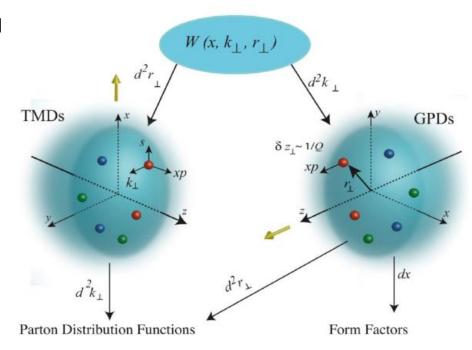

HERMES measurements

Model comparison

- high-x region almost unexplored
- it is the region where models deviate greatly from data
- high-x region on kaon data deviates consistently from models → CLAS12 + RICH + ND3 can provide important constraints

Toward a 5D mapping of the nucleon

Transverse Momentum Dependent and Generalized Parton Distributions are reduction of the *Wigner Mother Functions*, encoding the 5D structure of the nucleon


TMDs \rightarrow Semi-Inclusive DIS: $e p \rightarrow e h X$

GPDs \rightarrow Deeply-Virtual Compton Scattering: $e \ p \ \rightarrow e \ p \ \gamma$

CLAS12 is the perfect environment to access these two processes

Provide projections in the «5D space» in terms of DVCS variables $(x_B, Q^2, -t, \varphi)$ and SIDIS variables (x_B, Q^2, z, P_T) in the common electron (x_B, Q^2) kinematics

1D PDFs are the common part \rightarrow to be constrained simultaneously from the two processes

- o r_{\perp} : -t from DVCS (at $\xi = 0$)
- o k_{\perp} : P_T from SIDIS

Goal: provide a 5D data set

backup

Semi-Inclusive DIS and Transverse Momentum Distributions

$$F_{UU,T} = \mathcal{C}[f_1D_1],$$

$$F_{UU,L}=0,$$

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x h H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x f^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{H}}{z} \right) \right],$$

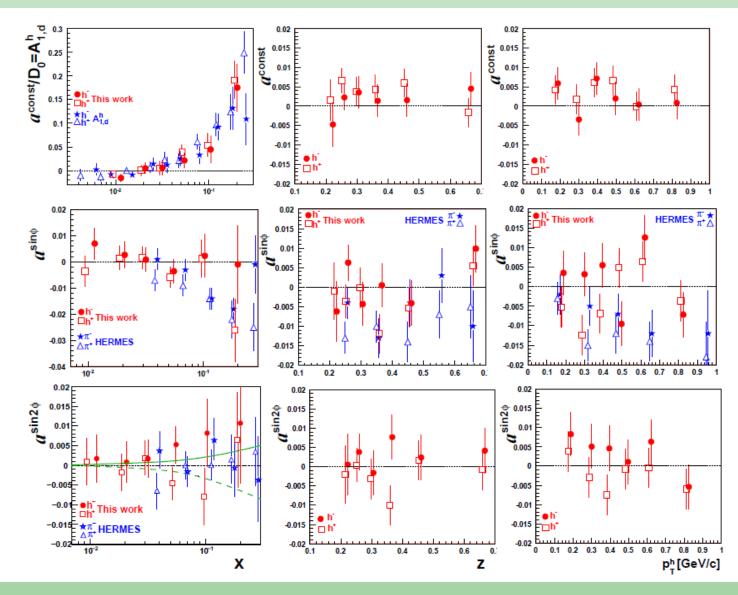
$$F_{UU}^{\cos 2\phi_h} = \mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right) - \boldsymbol{k}_T\cdot\boldsymbol{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}\right],$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe \, H_1^{\perp} + \frac{M_h}{M} \, f_1 \frac{\tilde{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} \, h_1^{\perp} \frac{\tilde{\boldsymbol{E}}}{z} \right) \right],$$

$$F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x h_L H_1^{\perp} + \frac{M_h}{M} g_{1L} \frac{\hat{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x f_L^{\perp} D_1 - \frac{M_h}{M} h_{1L}^{\perp} \frac{\hat{\boldsymbol{H}}}{z} \right) \right],$$

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right) - \boldsymbol{k}_T\cdot\boldsymbol{p}_T}{MM_h}h_{1L}^{\perp}H_1^{\perp}\right],$$

$$F_{LL} = \mathcal{C}\big[g_{1L}D_1\big],$$


$$F_{LL}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x e_L H_1^{\perp} - \frac{M_h}{M} g_{1L} \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x g_L^{\perp} D_1 + \frac{M_h}{M} h_{1L}^{\perp} \frac{\tilde{E}}{z} \right) \right]$$

COMPASS measurement (on unidentified hadrons)

