

Projects: Dogleg Upgrade

Friday 17th July 2015 Andrew Kimber

Project overview

- AIPDG1 Engineering and management oversight
- AIPDG2 Magnet removal, modification, test and reinstall ✓
- AIPDG3
 - Upgrade 9 power supplies [1] [2]
 - Upgrade facilities AC power distribution panel (complete),
 - AC supply cables(pulled, awaiting termination) and
 - DC output cabling between service building and tunnel (cables pulled and terminated at the magnet, needs terminating at supply)
 - Install Shunt Resistors for Doglegs 3-9, if required [3]

To be installed and tested by the Fall 2015 run

[1] RAR report from C. Tennant. PDF can be found in the dogleg project "Supporting documents" folder

[2] Dogleg specifications from M. Tiefenback can be found in the dogleg project "Supporting documents" folder

[3] Present plan is to software limit dogleg shunts to 10A. No shunt resistors required.

Specification

	Dog 1	Dog 2	Dog 3	Dog 4	Dog 5	Dog 6	Dog 7	Dog 8	Dog 9		
Long Term Current Stability - 8Hrs		500 ppm									
Long Term Current Stability - 24Hrs		500 ppm									
Max Ripple Current, Peak to Peak , 0-1kHZ		5 ppm									
Max Ripple Current, Peak to Peak, 1-10kHZ	ncha	100 ppm									
Max Ripple Current, Peak to Peak, ->10kHZ	ngec	500 ppm									
Min. Set Current Resolution	d fror	50 mA									
Absolute Current Accuracy	n 6G	500 ppm									
Current Repeatability	l e e	500 ppm									
Maximum Operating Current, A	ra	318	430	378	366	390	414	396	413		
Desired Current overhead		10%									
Hysteresis		No hysteresis cycle required									

- 80V, 500 Amps
- Low ripple field below 10kHz
- High Efficiency
 - Water requirement unchanged
 - Footprint for buildings are unchanged
 - Minimal impact on breaker and input AC currents

Timeline highlights

- Design phase started in earnest early this year
- All bulk supplies in house
- Detailed design and manufacture of boards, AC and DC plates, chassis and firmware nearing completion
- FA testing early August 2015 into resistive load
- Excellent progress made on subsequent units (50% complete)
- August and September will see testing of remaining units
- FA test into magnets late August
- Installation of units in W2 and NLSB in Sep/Oct
- Ready for Fall 2015 run

Design philosophy/concept

- Modular in-house design
- Use existing designs where appropriate
- Use existing components where appropriate (minimize spares)
- Keep it simple
- Improve on the designs of vendors
- Design so that it can be used for future projects
- Use UL approved products where possible
- Use best engineering practice (national codes, IEC standards)

Early concept of general layout

Modular design

Closing the loop

Design utilizes an off the shelf commercial bulk supply with an in-house digital control scheme, effectively 'closing the loop' around the bulk supply.

Why Digital ?

- Flexibility
- Easily reconfigured for different systems
- Adaptive (temperature compensation, etc...)
- Ability to implement modern control methods (State Space, etc...)

Bulk supply contract

- Tender was placed for a bulk power supply capable of 80V and 450A (36kW) with a regulation of 0.1% in September 2014.
- Bulk supply contract: \$256,753 for 10 units (under \$280k budget) was awarded to Ametek in January 2015.
- FA 'unit' arrived at JLab on May 7th and successful testing completed (with a couple of minor issues). A 'unit' is actually 2x250A units in parallel in master/slave configuration.
- Production units were all delivered in June.

Prototype/First Article

Rack progress

AC Plate

Back view

Front view

Top view

Interface boards/chassis

Controller Design

- Provides system control and instrumentation
- Implements feedback control loop
- Handles remote communication
- Provides local controls
- Implements fault logic (LCW, Overtemp, Overload, ...)

Why build in house?

We could have purchased 9 power supplies from vendor X

- Pros for designing/building in house:
 - Complete control over design decisions and layout
 - IP retained within JLab
 - Spares (especially PCB boards) will be significantly cheaper
 - Modular design, expandable (or reducible) as needed for future projects
 - Upgrade path, especially controls firmware
 - On the job training for technicians, easier to troubleshoot (because they helped build it)
 - Ownership of system
 - Interest for engineers
 - Dogleg PSU project was manageable in quantity, power (I&V), and can be delivered quickly
 - Potential cost savings
 - Build within timeline. Most vendors could not deliver full units before January 2016
- Cons:
 - No-one to blame but ourselves!!
 - Move risk from specification writing (Hall B power supplies not detailing dump circuit) to rest of design/manufacture/testing process – higher risk?
 - Labor intensive, prevents other projects making progress
 - Documentation problems (designer throughput, limited technical writing skill base)
 - Do not have years of power supply <u>manufacture</u> behind us
 - No 'standard' products to base designs on

Summary

- Overall the project is planned to complete, with float, by the fall run 2015
- Procurement costs should come in below budget, although labor costs look to be higher than what is currently in the AWP
- Bulk supply contract complete
- Other procurements nearing completion, testing of FA unit planned in ~two weeks.

This will be a major achievement for the DC Power group. It will give us units specifically designed for CEBAF operations and will give us flexibility and options for future projects

Backup slides

Overall mechanical design

Testing

PS Location	Dogleg First Article	Load Value	0.16 ohm	Date:	12-May-15		Names:	M.Augustine, M.Todd, K.Banks, S.Philip			Master SN: 1513A01842 Slave SN: 1513A01843			
	Ratio	0 Amps	50 Amps	100 Amps	150 Amps	200 Amps	250 Amps	300 Amps	350 Amps	400 Amps	450 Amps	500 Amps	500 Amps	500 Amps
												15:00	15:20	15:30
Drive	1.0000		1.0000		3.0030	4.0005	5.0004	6.0003	6.9990	7.9990	9.0009	10.0001	10.0001	10.0000
I Transducer	100.0000	72.0000	0.0000	93.3000	0.0000	199.1000	0.0000	298.6000	0.0000	398.0000	0.0000	497.2000	0.0000	0.0000
I out VDC (monitor)	50.0000	0.0000	0.0000	99.8500	0.0000	199.9000	0.0000	300.0000	0.0000	400.0000	0.0000	500.0000	0.0000	0.0000
V out VDC (monitor)	8.0000	0.0000	0.0000	13.5520	0.0000	27.2800	0.0000	41.4400	0.0000	56.1600	0.0000	71.7600	0.0000	0.0000
V out VDC (at load)	1.0000	0.0190	0.0000	13.5800	0.0000	28.7270	0.0000	41.4000	0.0000	56.0000	0.0000	71.6000	0.0000	0.0000
V L1 (VAC)	1.0000	476.0000	0.0000	476.0000	0.0000	473.0000	0.0000	472.0000	0.0000	474.0000	0.0000	473.0000	0.0000	0.0000
V L2 (VAC)	1.0000	478.0000	0.0000	478.0000	0.0000	473.0000	0.0000	472.0000	0.0000	474.0000	0.0000	473.0000	0.0000	0.0000
V L3 (VAC)	1.0000	476.0000	0.0000	476.0000	0.0000	475.0000	0.0000	474.0000	0.0000	476.0000	0.0000	474.0000	0.0000	0.0000
I L1 (AAC)	1.0000	7.2000	0.0000	5.3900	0.0000	12.0000	0.0000	22.1000	0.0000	33.5000	0.0000	51.1000	0.0000	0.0000
I L2 (AAC)	1.0000	7.2600	0.0000	5.0000	0.0000	10.8000	0.0000	21.4000	0.0000	34.5000	0.0000	51.9000	0.0000	0.0000
I L3 (AAC)	1.0000	8.4000	0.0000	5.9300	0.0000	12.5000	0.0000	23.5000	0.0000	36.6000	0.0000	54.6000	0.0000	0.0000
Power Factor (VAR)	1.0000	0.0700	0.0000	0.5040	0.0000	0.6830	0.0000	0.7660	0.0000	0.8610	0.0000	0.9060	0.0000	0.0000
Real Power In (KW)	1000.0	470.0	0.0	2270.0	0.0	6630.0	0.0	14050.0	0.0	24750.0	0.0	39100.0	0.0	0.0
LCW Flow Master	1.0000							1.4000						
LCW Flow Slave	1.0000							1.4000						
Temp (In) M	1.0000	0.0	0.0	85.0	0.0	86.0	0.0	86.0	0.0	86.0	0.0	86.0	0.0	0.0
Temp (Out) M	1.0000	0.0	0.0	88.3	0.0	88.6	0.0	89.9	0.0	91.6	0.0	93.9	0.0	0.0
Temp (In) S	1.0000	0.0	0.0	84.8	0.0	85.0	0.0	85.0	0.0	85.3	0.0	85.7	0.0	0.0
Temp (Out) S	1.0000	0.0	0.0	84.7	0.0	85.6	0.0	86.2	0.0	87.9	0.0	89.6	0.0	0.0

Risk register

- 1. Work priority clash with 12GeV (Hall B?)
 - Designer time for schematics and layouts
 - Fab shop time for stuffing boards in house
 - Turnkey if needed?
- 2. Re-spin required of Power Supply controller
- 3. Bulk supply contract fails to deliver production units on time
- 4. Firmware takes longer than expected

Overall Electrical Design

AC Plate electrical

480VAC INPUT, VVU, AC POWER MONITORING WIRING --SYS B1,B2,B3,B7

DC Plate electrical

Costings

- AWP states:
 - 1.1 FTE's for DC Power (2.3 on plan, worst case)
 - 0.6 FTE's for Fab shop, designer and electricians (0.56 on plan)
 - 0.27 FTE's for Seaton (0.4 on plan)
 - ? FTE's for Croke (0.2 on plan)
 - \$518.34K of procurements allocated, \$300.21K YTD spent/committed
 - \$256,753 for bulk supplies (10 units)
 - \$38,626K spent in FY15 on
 - Racks for all units (~\$22K)
 - DCCT's for all units (~\$7K)
 - Misc. parts for prototype unit (~\$10K)
 - Closest comparison is LAM1C (500A/80V) for \$61.4K (part of a larger contract and 2012 dollars) + install/test labor
 - We estimate each dogleg will be \sim \$40-45K per power supply (+ labor)
 - Additional costs for remaining items (Electricians) and infrastructure, prototyping

Under on procurements, over on labor