12 GeV CEBAF

Model Development

- Not just an interesting exercise:
- Must be able to explain observed machine behavior and predict new behavior
- Part of this involves designing "ad-hoc" solutions to optics problems as we encounter them (i.e extraction redesign)
- Also, focused on achieving certain beam parameters for the needs of the users (PQB team)

- Revisiting Extraction
- Magnet Field Quality
- Synchrotron radiation effects on upper pass steering
- Linac Focusing
- Longitudinal phase space tracking
- Spin tracking
- Hall A raster pattern
- Hall A 5T moller target
- Future Plans

Revisiting Extraction

- Initial commissioning of separators showed they lacked the power to fully extract the beam
- Revisited the optics to use the E01,E02 and E03 quadrupoles to compensate for the lesser RF kick.
- Successfully tested and utilized to run the beam. The observed position was as predicted.

Revisiting Extraction(cont)

For the 12GeV project, developed an analytical model to calculate the extraction parameters,

×	19	· ભ ∣							extr	actionoptimiza	ation-alternatepa	iss5 - Microso	ft Excel										
File		Home Inse	ert Page Lay	out For	mulas D	ata Review	View	_	_	_	_	_	_		_	_			_	-	6	0 -	a ×
DL 📑	∦ C ⊡a C	Cut Copy - Format Painter	Calibri B I U	- 11 - = -	· A ́ ∧ ́	===		Wrap Text Merge & Center	General	* *** *** Co	enditional Format	Normal Neutral	Bad Calcula	Go ation Ch	ood eck Cell	inser	Delete	Format	Σ AutoSun iii Fill ~ iii Clear *	Sort &	Find &		
c	Clipbo	ard 5		Font	ſ	5	Alignment	r.	a Numbe	r G	matting Table		Styles				Cells			Editing	Jelecc		
3	D23	3 👻	(* 1	*																			¥
A 1	A	B Gq1(kG/cm)	Lq	D LRF-E01	E LRF-RF	F LE01-E02	G pałe	H LE02-Yae	l LYA1ex-YA2en	J LYA-E03	K LE03-YR	L Gq2 (kG/cm)	M Gq3 (kGłom)	N LE02-E03	0 LE03-A01	P LYR-8P	Q	R	S T	U	V V	/ X	-
3 BI	kG]EXT	-0.353982	45 30 (41	-10285	180.34	0 29426640	9 36.768770	21 .0 452590054	55.9990038	1 1252.60194	16 682.522467	1.1404	-145 -3.829201867 1.74295-01	1655	024 0740020	532.937							
5 E 7	na) ne ca	thetarf thetarf2	EXT 5.0000E-05 5.0000E-05 5.0000E-05	-2.5000E-05 -2.5000E-05 -2.5000E-05		3.41E-0	FIF power(watts) 5.7860E+0	per cavity 13 14465E+03	11	1 4.08133349	122,4400048	1.060436783 LBP128P2	-1.038959523 41.717 4.1717173E + 01	-0.7395321	8.255644E+02								
9 10 11		thetarf4 thetaYA thetaYB apple evit	5.0000E-05 8.60E-04	-2.5000E-05 1.16E+05	rhoYA rhoYB	E[kG] YA E[kG] YR	3.162114E-0 7.20537997E+0	01 0.375 limit 10 2.00036056E+02	values given at values given in	middle of eleme radians and cer	ents except for dip ntimeters	oles .											
13 14 15 16 17		pos at E01	2.4413E-01 8.060244E+03 E×T 2.8882E-04 -9.7989E-04	12205E-0 FECIRC -14441E-04 4.8954E-04		"8058.14 to 8061.9 E 02 1053 E +0 -5.2656E -0	*8059.95 to 8057. *8060.5 to 8062.2 irst YA entrand 9.88595-0 1 -4.94305-01	28 18056,3 to 8059,991 18050,49 to 8052,25 cc First YA exit 01 9,8248E-01 -4.6974E-01	"8056.3 to 8059.98" "8060.48 to 8062.25 2nd YA ent 1003'E+0 -0.45599244	"8056.3 to 8059.90 "8060.49 to 8062.7 2nd YA exit 1.0830E+0 -4.3144E-1	31 25 *8059.2 to 8063.6* E 03 30 2.6408E +00 01 -1.2020E -01	*8056 to 8060.7* *8064.4 to 8069.9 YR entrance 5.6773E+00 5.1067E-02	*8058.2 to 8060.7" *8069.7 to 8072.2" YB exit 10468E+01 1.0017E-01										
18 19 20 21		thetag3	3.1243E-03 1.0333E-04 3.96E-02	-0.0001422	1.5797E+00	8.0611E+0 8.059473E+0 18094.3 to 8088.9 BP ent	3 8.0610E+0 3 8.0595E+0 5" "8094.84 to 8100.8 BP1 exit	13 8.0610E+03 13 8.0595E+03 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	8.061003E+0 8.059544E+0 18094.5 to 8100.5" BP2 entrance	3 8.061083E+0 8.059563E+0 "8090.95 to 8096.9 BP2exit	3 8.0626E+03 3 8.0558890E+03 37 "8061.7 to 8067.04" Bp3 ent	8.065677E+03 8.0601E+03 *8056.36 to 8063.1 BP3 exit	8.070468E+03 8.0601E+03 angle	7.680055E-01 4.35532E-02									
22 23 24	.14075.92	950.1	09 EEE01]	3.3694E+0 8.093694E+0	1 3.8346E+0 3 8.098346E+0	01 8.060051E+03 13 5.0617E-02 1.0222E-04	3.8466E+0 8.098466E+0	1 3.4974E+1 3 8.094974E+0	01 3.7799E+00 3 8.063780E+03	1,2581E-09 8.0600E+03		2 495415E+00									
24 25 26 27 28	-15206.41 -16861.41 -16861.41 -17092.81	-16861.4 -16861.4 -16992.9 -17148.9	07 E01E02 07 E02E03 08 E02Yalert 07 YAlex-YA2en	-17092.808 -17248.807	YA1exit YA2exit	4.35532E-0 solve for BP ang angle	2 • -4.0674E-0	BP(deg)	BP2(deg) -2.16545115	1	deltaz			-2.000469E+00									=
30	-18516.41	-19213.9	79 A01 tgt	-19413.876	BP1ent	n(x) P(x)	2210.38531	13			10001736+02	2.000357E+02	00.0238107	CAD 0710301									
32 33 34 Y/	Affringe	YA2fringe	Yifringe	JG1fringe	JG2 fringe	JH fringe	drho¥dtheta1	-12097E+05			YR BL	curved 1441336	straight 1441336	646.5986182	shunt	shims(cm)							
36 37 38	-0.028136 0.0774107	0.1266850	53 1.122997278 23 1.122997278	-0.1649821	2.00046909	s 100023454 3 100023454	7 dhro1a/dtheta1 7 drho2/dtheta1 rho1 rho1a	-1209/E+05 -2.7997E+05 -4.93E+03 -4.92E+03	200.422704 200.067702 2.00047621E+0	E(KG) 8 -7.46184482 6 -7.475085 2 -6.94658687E+0	28 BP1 52 BP1A 30 BP2	EL -1495523 -1495523 -1389648	-1492369 -1495017 -1389317	650.0037 651.5719301 649.9733009	-3.4051 -4.9733 -3.3747	0 0 0	2.50% 2.50% 2.50%						
40 41 7 42 43 0 44 6 45			-2009/:562 -20139.337 -41.755	-20339.356 -21164.404 -825.046		8P1 LD1 8P2 LD2 8P3	rho2 DELTAY1 DELTALD1 DELTAY2 DELTALD DELTAY3	-5.29E +03 4.65E +00 1.20E-01 -3.49E +00 -3.12E +01 -3.78E +00	d(deltaY1)/dth1 d(deltaLD1)/dth1 d(deltaLD1)/dth1 d(deltaLD1/dth1 d(deltaLD1/dth1 d(deltaY3)/dth1	1000286E+0 4.17E+1 2.16E+0 1.65E+0 2.00E+0	02 01 12 13 13	scale 1	1523342		204.3053 204.66725	204.3053 204.66725 204.66725							
6 47 6 48 9 49 50										shimmed maps	measurements JGAT03A	x"5	x^4 9 90042E-22	x*3	x^2	×1	×^0						
1 51 1 52 1 53 54											JEAT03 JHAT04	x'5 -7.04127E-30 x'5 5.74547E-29	x^4 101526E-22 x^4 2.93929E-22	x13 -2.68526E-16 x13 5.24672E-16	x ² 2.63128E-10 x ² 4.00449E-10	x ¹ 0.000338738 x ¹ -0.000350341	x^0 -0.508609 x^0 -0.404793						
55	F H	BSY2 BSY	A BSY6	BSY8 BS	SYA / YR	map pre 1997	YR map p	oost 1997 / S	caled correctly f	from pre 1997	YRAT02	x'5	x^4	x^3	x^2	x^1	x^0					_	► []
Ready	y Circu	ular References	s: J43										_						HH C	[凹] 60%	0-0	J	+

Quadrupoles and dipoles Field quality

Jefferson Lab

Dipoles were converted From C to H style

	MBE1m(16)	MBR2m	MBE1m	MBB2m	MBA3m	MXP4m
	ARC1	ARC2	ARC3	ARC4, 5, 6	ARC7,8,9	ARCA
$K_2L \ (m^{-2})$	0.35	0.22	0.24	0.12	0.11	0.07
$K_{3}L(m^{-3})$	2.22	3.51	8.31	4.21	2.20	2.26
$K_4L \ (m^{-4})$	543	1390	327	166	215	148
$\frac{\underline{B'}L}{BL} (m^{-1})$	0.022	0.020	0.036	0.018	0.015	0.010

Magnet field quality (cont)

- We have the measured quadrupole terms for the dipoles in the model. Beam based measurements confirmed they are correct.
- It is possible to analyze the data for the sextupole term. Currently in progress.
- Comparison with TOSCA calculations (from J. Benesch) in progress.

Linac Focusing

- Effect of gradient distribution in linac
 - Tool developped by D. Turner to load in grad.
 Distribution in ELEGANT.
 - Effects are small unless one is at low gain per linac
- Effect of cavity Focusing in linac
 - Just affects the first two quadrupoles in LINAC.
 Not adjusting them produces a beta beat of a few percents at most.
- Effect of gradient calibration in linac

Jefferson Lab

Because of "fudging process", its has a negligeable effect even with 5% uncertainty.

Effect of synchrotron radiation on upper pass steering

Longitudinal Optics

- Parity Experiments require tight beam quality.
- Longitudinal match of the machine now a concern.
- Optimized with LiTrack for fast turnaround
- Final tracking in ELEGANT confirms the results.
- Initial results suggest installing sextupoles in injector chicane and running off crest in linacs if we keep the non-zero M56 arcs.

Tracked to MQK1H04 wired backwards. After reversing the polarity we get the expected pattern:

Zero M56 in upper arcs

No tails in both cases, just longer bunch if we run with the chicane off.

Spin Tracking

- Currently Collaborating with F. Meot (Brookaven) to perform 3D spin tracking through the machine
- Preliminary estimates of dilution (with ELEGANT) show that one will have to readjust Wien filters and that the optimal setups for multiple hall deliveries will be slightly different.
- Putting together a model to do that.

New Moller Target

- Hall A is installing a 5 Tesla solenoid.
- Manufacturer provided field $B(r, \theta, z)$
- Tracked 3D field in ELEGANT

Jefferson Lab

Sample distributions. The real field map is more fine grained.

Spot at DUMP

 Adjusting MCZ1H04V and MBD1H04H centers beam on dump. MCZ1H04V was added specifically for this purpose.

Plans

- Short term
 - Eliminate step Optim -> ELEGANT
 - Convert optics to zero M56 in upper arcs
 - Revert Extraction to nominal
- Medium term
 - Develop strategy for longitudinal matching aimed at minimizing Halo in Halls.
 - Study chromatic effects (sextupoles?)
 - Analyze magnet measurements for sextupole component, formulate new measurements, include in model

