

Long Range PIT Summary and Plan

PIT Team

Long Range PIT Team Goals

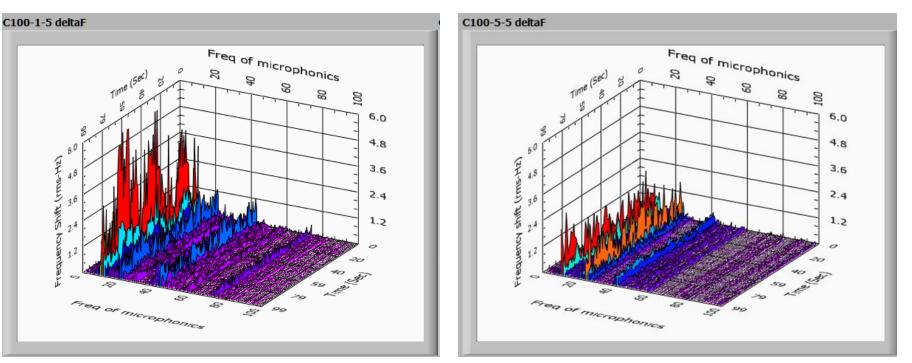
- Investigate, understand, and improve long term SRF linac performance
 - Quantify/Summarize performance as built
 - Suggest and implement measurement plans to quantify performance changes
 - Work to understand any changes observed
 - Suggest improvements in operations
 processes and/or hardware and implement
- Understand better "accelerating system wide" problems
- Implement rational data management

Gradients in C100 During Commissioning (Rama)

Zone	Beam Measurement	During Commissioning
C100-1	104 MV	94.01 MV
C100-2	122	93.8
C100-3	108	76.58
C100-4	93	79.24
C100-5	121	100.31
C100-6	111	101.8
C100-7	104	103.81
C100-8	110	100.17
C100-9	105	101.15
C100-10	106	87.57
C100-0	104	82.3

SC1 CC4 Findings (Jonathan)

- Backup ball bearing failure
 - When rotor fell bearing 0 to 35,000 RPM instantly
 - Inner and outer races shattered
 - Balls damaged
 - Shaft scored
 - Position sensors damaged
 - Air Liquid and S2M working on estimates
 - CC4 repair
 - Balancing spare wheels
 - List of recommended future spare parts

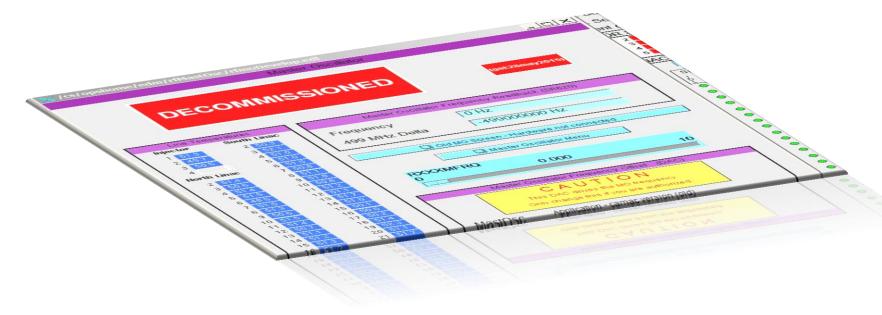


Microphonics Spectra vs Time (Kirk)

Original Tuner

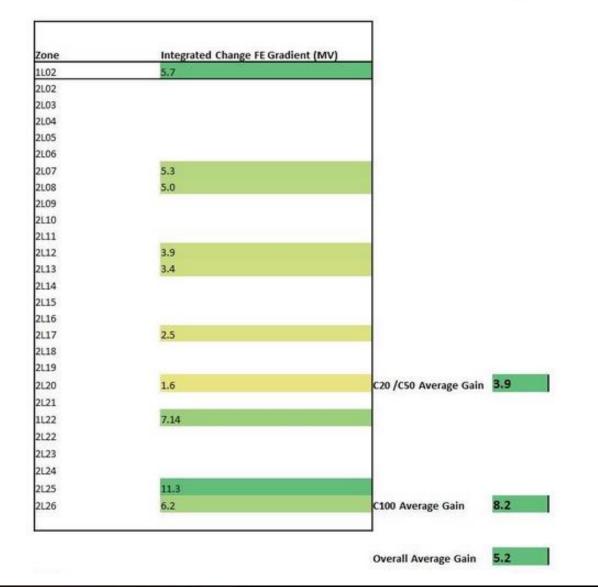
Modified Tuner

Suggestions for the Future (Kirk)


- 1. 24 Cavity (simultaneous?) measurement of baseline C100 vs modified C100 cryomodules in adjacent zones vs R100. (August, 2015)
- 2. Long-term accelerometer study of 0L04 (R100, late fall 2015):
 - a) Trigger off of module trips, look at pre-trigger accelerometer data
 - b) Trigger off of 6σ accelerometer events, look at LLRF data
- 3. Develop, install, test a helium pressure sensor with >50Hz bandwidth, fluid coupled to the LHe circuit.
- 4. Develop, install, and commission an accelerator-site continuous vibration monitoring system.

Future Plans (Tomasz)

- LCW 19" Rack Mount Water Chiller (temp. stability ± 0.1° C) 4 local MO racks
- Remove obsolete EIPCS Screens


Schedule vs. Actual (Mike)

Schedule					Actual			
Zone	Baseline Meas	He Proc	Cryocycle	Post Proc Meas	Baseline Meas	He Proc	Cryocycle	Post Proc Meas
1L02	Completed in .	lan '15						
2L02			1					
21.03								
2L04					75			
2L05								
21.06	200	75						
2L07					100	100	100	100
2L08								
21.09								
2L10								
2L11					100	100	50	
2L12	100	100	100	100	100	100	100	100
2L13								
2L14)/							
2L15								
2L16					100	100	100	100
2L17								
2L18	100	100	100	100				
2L19								
2L20								
2L21	-							
1L22	Completed in .	lan '15						
2L22								
2L23	50				75			
2L24								
2L25					100			
2L26								
	Ten Modules C	omplete			Ten Modules Co	omplete		

Gain in Field Emission Free Voltage (MV) (Mike)

Energy Reach: Past and Future

without Maintenance

with Maintenance 🗕

12GeV requirement

Data: C20+C50+C100

Helium processing of all cavities planned for Summer 2015

- C20/C50 performance degradation:
 - 0.21 MV/m year (~34 MeV/pass year).
 - Cause of degradation is unknown, actively being investigated.
- C100 insufficient data to date to reliably estimate degradation, if any.

OPS 2015

Collecting Particulates (Rongli)

Individual Heater Controls (Tom)

- When SL21 was installed in the FEL we needed to get all of the energy out of the cryomodule as possible.
- One of the problems that we found when we had 8 heaters powered off of one supply is that if one or more cavities was below the maximum gradient, the heaters on all of the cavities were turned on to compensate. This meant that we would have the RF heat (which was pushing the limits) plus the heater heat which pushed us over the threshold and we had boiling. Enables Modulation Experiments!
- The fix for FEL3.
 - Implemented individual heater controls for each cavity
 - Operated with expected RF Heat set about 20% below the drive high RF heat.
 - Disabled swing heater function for that zone.

Proposal for New Studies and Tests (Rongli)

- Further evaluation of nitrogen-doping for raising
 Q₀ 5-cell cavities, including possible re-doping after barrel polishing.
 - Two cavites in hand:
 - IA008 (N-doping completed)
 - IA011
 - A clear conclusion on N-doping is useful
 - Positive answer sets solid ground for possible future path of Nb₃Sn re-treatment.
 - Negative answer sets solid ground for possible future path of "LG cell transplant"

Fundamental studies of defects in IA009

 Dissect cavity, make 5 each 1-cell cavities, test with T-mapping, cut out quench area for material studies.

CEBAF energy maintenance options (Bob)

• Summary of options and estimated costs

	cavities	cells/ cav	cav length m	Act. length m	fill factor %	WAITAGA	volts/ cav (MV)	gradient (MV/m)	-	unit cost (FY16 M\$)	voltage gain (MV)	V/\$
C50	8	5	0.5	4	48.1	50	6.25	12.5	6	1.51	20	13.3
C100	8	7	0.7	5.6	64.4	100	12.5	17.9‡	13	4.77	70	14.7
C75†	8	5	0.5	4	48.1	75	9.4	18.8‡	8	1.91	45	23.6
C75†*	8	6	0.6	4.8	57.8	75	9.4	15.6	8	2.31*	45	19.5
J100*	6	9	0.9	5.4	65.0	100	16.7	18.5‡	~17	???	70	???
J75*	6	9	0.9	5.4	65.0	75	12.5	13.9	13	<u>.</u>	45	???

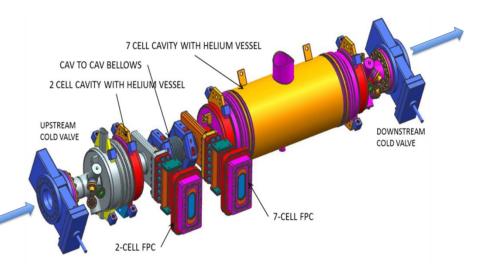
[†]New cells or new processing required to achieve higher Q's and gradients ^{*}Engineering required at additional cost (not included) [‡]Digital LLRF required

Current Plans (Rama)

- Helium Processing in progress
- Installation of Individual Cryomodule Heater Control System (Exercise these!)
- Microphonics Detuning analysis, Piezo Algorithm studies and Implementation
- Pressure sensor sensitive to He fluctuations
- Control Loop Optimization
 - Investigate the loop phase mismatch between SEL and GDR
- Klystron Drive Cables
 - Detect the source of crosstalk
- I'm quite happy with general progress and activity; except in the documentation theme (inadequate leadership!)

New CEBAF QCM (Tony)

General Scope


 Design and build a new quarter cryomodule (QCM) for CEBAF utilizing a new 2-cell elliptical and a modified elliptical 7-cell cavity

FY15 Scope

- Complete cavity qualification
- Procure components
- Assemble cavity string
- Complete cryomodule design

FY16 Scope

- Close out CM procurements
- Cryomodule assembly
- Cryomodule acceptance test
- Cryomodule install and commission
- C50-12 too!

H. Wang et al. "Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design"

T.Reilly, Accelerator

Present "Vision"

- If we would like to write a PRSTAB paper of the 12 GeV performance need
 - Main parameters data for every cavity and summaries (Q0, QL, Emax, Emax(ops), …
 - Descriptions of ancilliary equipment (RF sources, couplers and probes, LLRF, cryogenic systems, ...
 - Summary data on these items for publication
 - Reliability Descriptions (main phenomena of interest) and data
 - Can help get "over the hump" for Task 1

