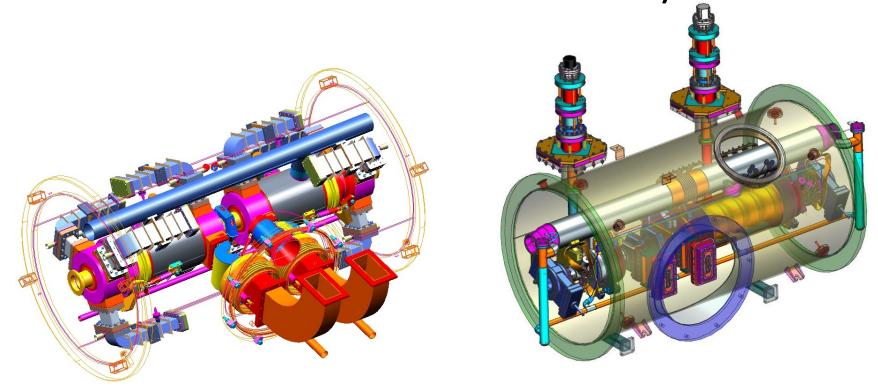


C75 options

F. Marhauser, J. Henry, R. Rimmer, J. Benesch

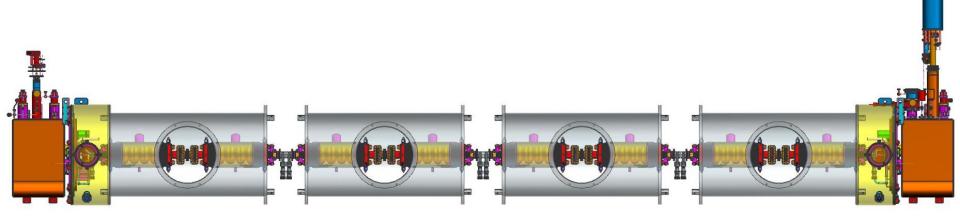
Options for "C75"

Goal is to investigate something between C50 and C100 with more "bang for the buck"


- Cost like C50, performance like C100
- "magic bullet": some process to transform old cavities
 - N₂ Doping, Nb₃Sn, ???
- New cavities in old CM
 - Add cost, but gain performance*
 - Could fix coupling kicks
 - Significant engineering required
 - What about "cell transplant"?
- New less expensive C100 CM
 - Major re-engineering needed. Synergy with MEIC?

^{*} Need to find and fix the cause of Q loss to make this worthwhile

FEL HC design study


For FEL upgrade we looked at a new high-current
 5-cell cavities that would fit in old cryounits

Also for new CEBAF cryounit (same insertion length)

6-cell C75 cavity

- Squeeze 6-cell cavity into space in pair
 - Eliminate separate helium vessel hubs
 - Use C100 center type waveguide interface
 - Use C100 type HOM cans instead of waveguides
- Significant engineering needed to make it real
 - New tuner required? (Rock-crusher or blade type?)
 - Separate helium vessels

"J100"

Jay's 12 GeV proposal:

- −6 x 9-cell cavities
- −~18.5 MV/m average

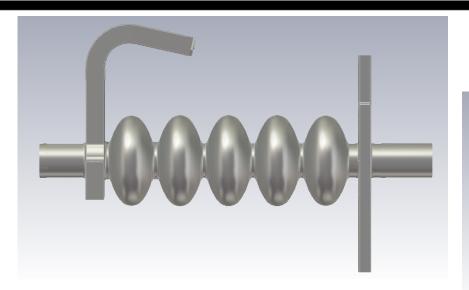
- -Stretched CEBAF type pairs, extended vessels
- -Higher power ~17 kW FPC, klystrons (but fewer)

What about J75?

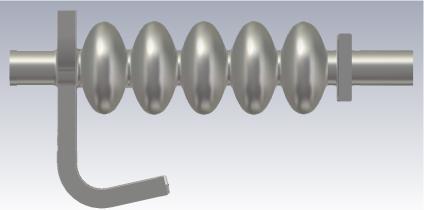
-~14 MV/m, ~13 kW tubes, 12 GeV LLRF

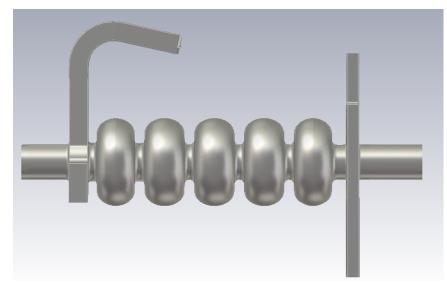
CEBAF energy maintenance options

Summary of options and estimated costs

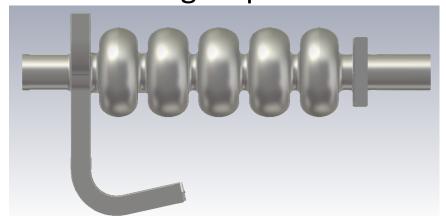

	cavities	cells/ cav	cav length m	Act. Iength m	fill factor %	MOITAGA	volts/ cav (MV)	gradient (MV/m)	_	unit cost (FY16 M\$)	voltage gain (MV)	V/\$
C50	8	5	0.5	4	48.1	50	6.25	12.5	6	1.51	20	13.3
C100	8	7	0.7	5.6	64.4	100	12.5	17.9 [‡]	13	4.77	70	14.7
C75 [†]	8	5	0.5	4	48.1	75	9.4	18.8 [‡]	8	1.91	45	23.6
C75 [†] *	8	6	0.6	4.8	57.8	75	9.4	15.6	8	2.31*	45	19.5
J100*	6	9	0.9	5.4	65.0	100	16.7	18.5 [‡]	~17	3 55	70	???
J75*	6	9	0.9	5.4	65.0	75	12.5	13.9	13	3 55	45	???

[†]New cells or new processing required to achieve higher Q's and gradients

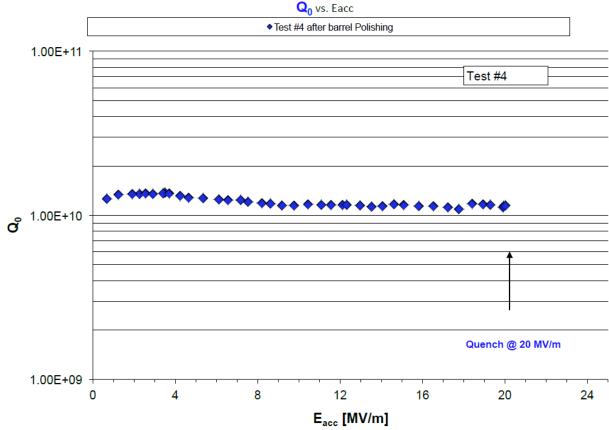

^{*}Engineering required at additional cost (not included)


[‡]Digital LLRF required

Opt. 3:High Current (HC) Cavity for C50 Cryomodules?



OC 5-cell cavity


HC 5-cell cavity using C50 HOM and FPC endgroup - "HC50"

VTA test 1497 MHz HC 5-cell cavity

- Large grain with damaged cell from CBP, final BCP
- Q₀ ~ 1.1e10 up to 20 MV/m

Cavity Parameters

Parameter	Unit	C50	HC50
Frequency @ 2 Kelvin	MHz	1497	1497
R/Q ($\beta = 1$)	Ω	482.5	525.4
G	Ω	274.0	275.6
R/Q*G	Ω^2	132205	144802
tube/iris ID	mm	70/70	70/70
TE11/TM01 cutoff	GHz	2.51/3.28	2.51/3.28
cell-to-cell coupling	%	3.15	3.15
U _{acc} (nominal, on crest)	MV	6.25	6.25
L _{active} (nominal)	mm	499.855	491.600
E _{acc} (nominal @ 50 MeV)	MV/m	12.50	12.71
E _{peak} /E _{acc}		2.56	2.45
B_{peak}/E_{acc}	mT/(MV/m)	4.56	4.18
E _{peak}	MV/m	32.0	31.1
B _{peak}	mT	57.0	52.3
P_{cav} (@ $Q_0 = 6.8e9$)	W	11.9	10.9
P_{CM} (@ $Q_0 = 6.8e9$)	W	95.2	86.9

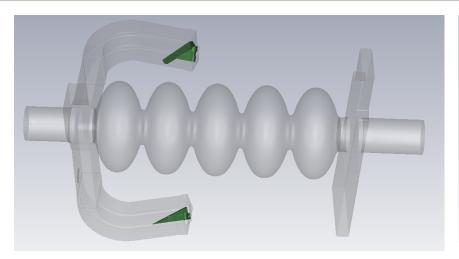
• At same Q_0 about 1 W reduction of dynamic losses per cavity at 2 K (~10%) at 50 MeV based on cavity design

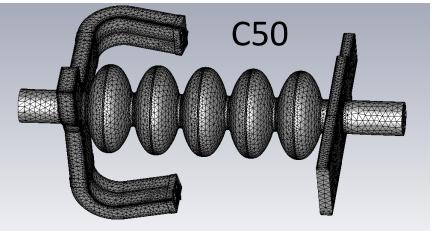
Cavity Parameters

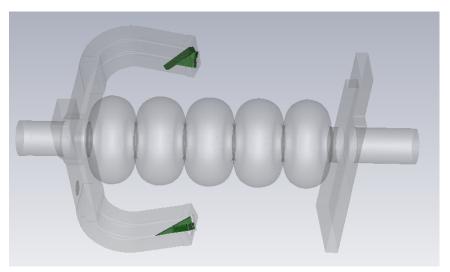
Parameter	Unit	C50	HC50
Frequency @ 2 Kelvin	MHz	1497	1497
$R/Q (\beta = 1)$	Ω	482.5	525.4
G	Ω	274.0	275.6
R/Q*G	Ω^2	132205	144802
tube/iris ID	mm	70/70	70/70
TE11/TM01 cutoff	GHz	2.51/3.28	2.51/3.28
cell-to-cell coupling	%	3.15	3.15
U _{acc} (nominal, on crest)	MV	6.25	6.25
L _{active} (nominal)	mm	499.855	491.600
E _{acc} (nominal @ 50 MeV)	MV/m	12.50	12.71
E_{peak}/E_{acc}		2.56	2.45
B_{peak}/E_{acc}	mT/(MV/m)	4.56	4.18
E _{peak}	MV/m	32.0	31.1
B_peak	mT	57.0	52.3
P_{cav} (@ $Q_0 = 1.1e10$)	W	7.4	6.7
P _{CM} (@ Q ₀ = 1.1e10)	W	58.9	53.7

Dynamic RF losses

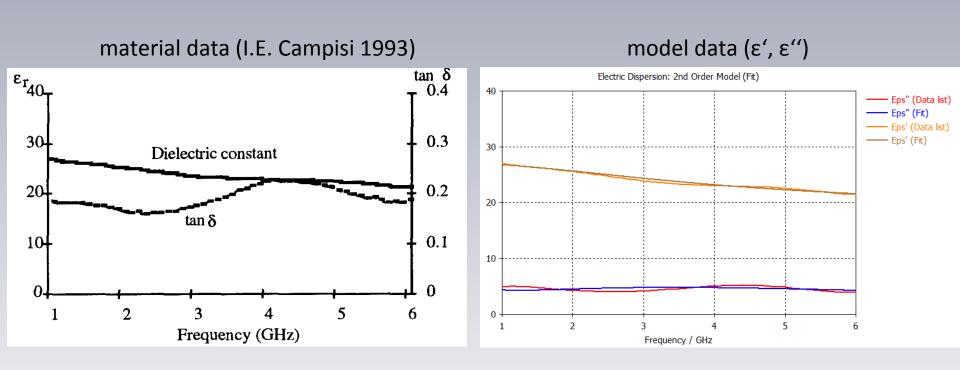
Parameter	Unit	C50	HC50	ΔP _{RF} (W)	ΔP _{RF} , max
50 MeV gain					(W)
E _{acc} (nominal @ 50 MeV)	MV/m	12.5	12.7	-	-
$P_{cav}(@ Q_0 = 6.8e9)$	W	11.9 _m	ax. 10.9	1.0	-
P_{cav} (@ $Q_0 = 1.1e10$)	W	7.4	6.7	0.64	5.2


- 1.04 W/cav. reduction at same low Q₀ (8.3 W per CM)
- 0.62 W/cav. reduction at same high Q₀ (5.2 W per CM)
- 5.19 W/cav. max. reduction with Q₀ gain (41.5 W per CM)


Parameter	Unit	C50	HC50	ΔP _{RF} (W)	ΔP _{RF} , max
70 MeV gain					(W)
E _{acc} (nominal @ 70 MeV)	MV/m	17.5	17.8	-	-
P_{cav} (@ $Q_0 = 6.8e9$)	W	23.3 m	ax. 21.3	2.0	-
P_{cav} (@ $Q_0 = 1.1e10$)	W	14.4	13.2	1.3	10.2

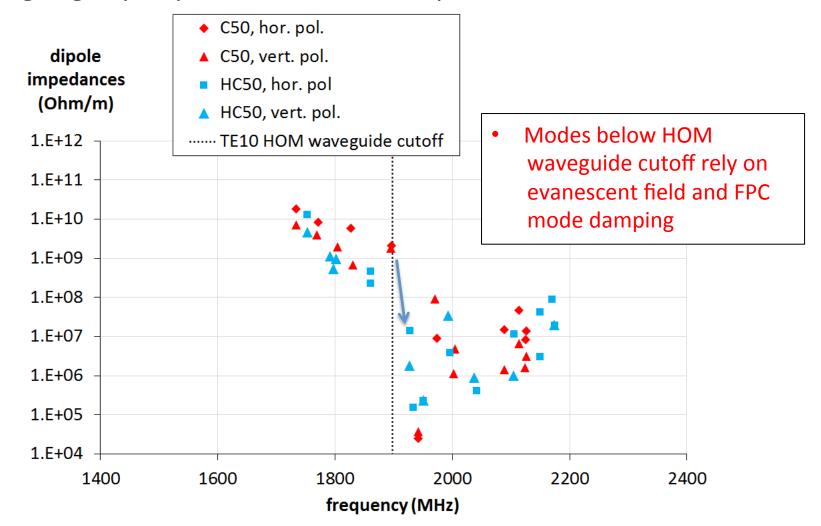

- 2.04 W/cav. reduction at same low Q_0 (16.4 W per CM)
- 1.26 W/cav. reduction at same high Q₀ (10.1 W per CM)
- 10.17 W/cav. max. reduction with Q₀ gain (81.4 W per CM)

What about HOMs?



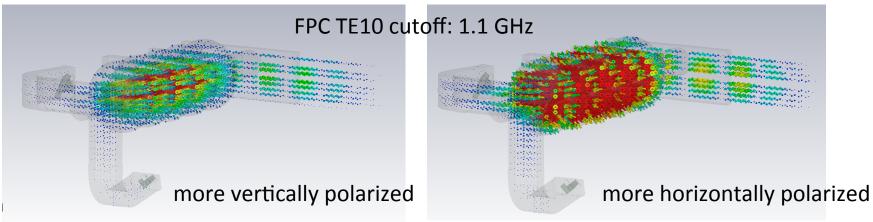
Can now model in CST Microwave Studio including HOM loads

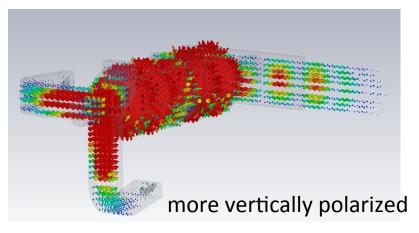
C50-style load

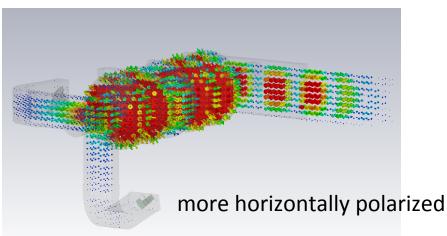

Include material properties in calculation instead of perfect match

HOM Damping

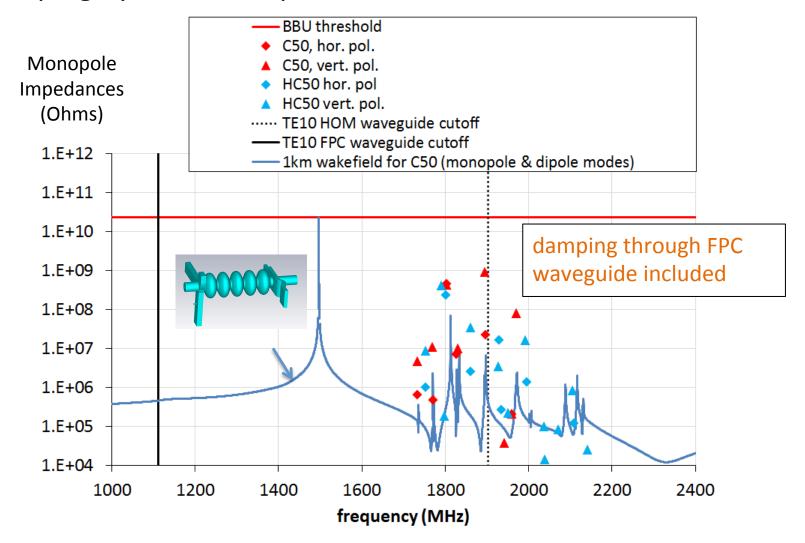
Damping slightly improved for crucial dipole modes



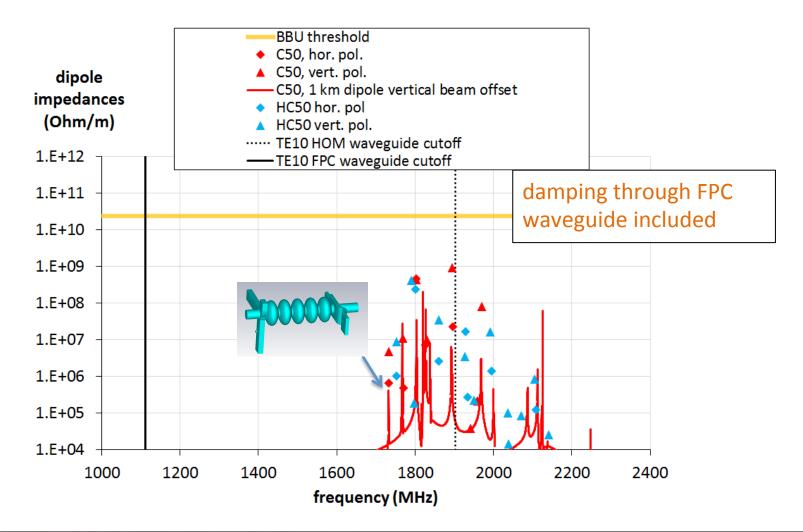

TE111 HOMs below HOM Waveguide Cutoff


• 1st TE₁₁₁ mode pair $(\pi/7)$: ~1725 MHz

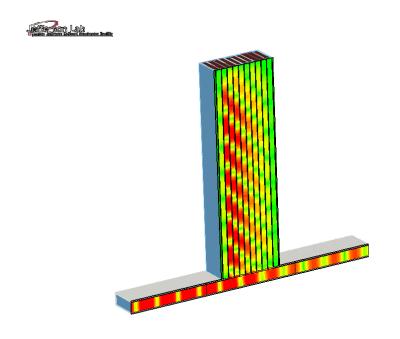
scale similar throughout (electrical RF field)

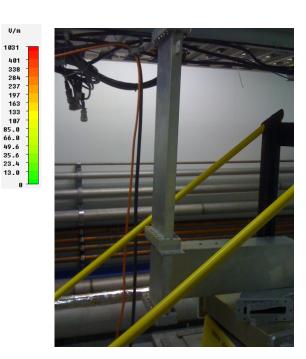

• 2^{nd} TE₁₁₁ mode pair $(2\pi/7)$: ~1760 MHz

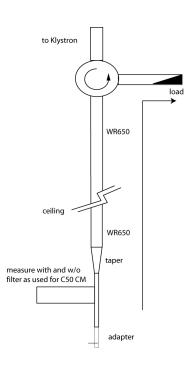
HOM Damping (with FPC damping)


Damping by FPC has impact on modes close to BBU threshold

HOM Damping (with FPC damping)


Damping by FPC has impact on modes close to BBU threshold





C50 external HOM filters

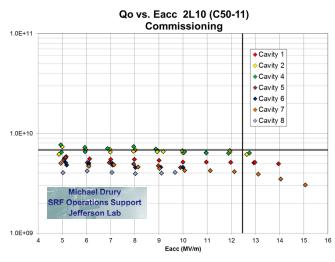
This was one reason to utilize the CM-external CEBAF filters

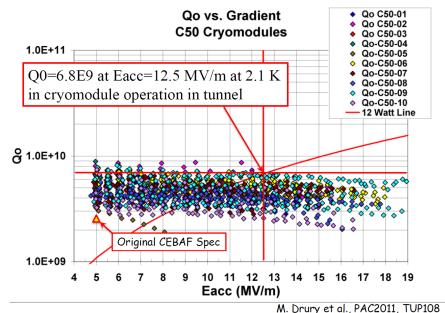
Conclusions

Numerous options for improved cost-effectiveness

- Magic bullet (still looking...)
- Cell transplant
 - minimum perturbation
 - Best near term "bang for the buck"?
- New cavities
 - engineering required
 - Can fix other problems
- New cryomodule
 - more engineering required
 - May have synergy with MEIC
 - Possibly cost–effective long term

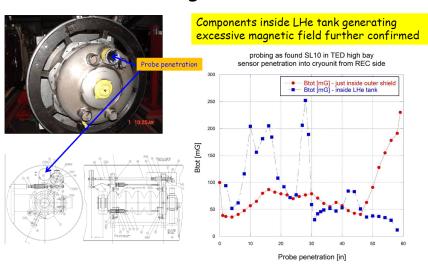
Proposal


- Build two "HC50" cavities using in-stock ingot material and existing spare end groups
 - –We have the dies
 - ─We have the material but needs slicing (~15k)
- Process and test in VTA
- If good insert into next available C50
- Cost ~50k, mostly shop, e-beam welding and chemistry/VTA


Back up

CEBAF SRF Workshop (April 2014)

- C20: met $Q_0 = 2.4e9$ at 5 MV/m at 2K \rightarrow 45 W dynamic load per CM
- C50: Q_0 target 6.8e9 at 12.5 MV/m at 2.1 K \rightarrow ~100 W dynamic per CM (M. Drury, PAC07, WEPMS059)
- C50-11 Q0 Analysis (Rongli Geng): No cavity reached target Q_0 in CEBAF tunnel during commissioning, on average factor 2 lower Q_0
- Observation: $Q_0 = 5e9$ at 6 MV/m similar to 1992 commissioning, i.e. no improvement by refurbishment at 6 MV/m
- But Q₀ > 1e10 at 12.5 MV/m in VTA)



CEBAF SRF Workshop (April 2014)

C50-11 Q0 Analysis (Rongli Geng)
 Additional Probing in As-Found Condition

Discovery of Magnetized Strut Springs

At same Q, about 1 W reduct

High- μ and high remanent field springs from original module

New low- μ and low remanent field Springs acquired and implemented

Mitigation of Magnetic Tuner Components Threaded Rod being a Major Contributor

New 316L Threaded Rod has Significantly Lower Permeability

Tuner Assembly

Preliminary Conclusion

- Clear demonstration of magnetized components inside inner shield.
- Discovery of magnetized strut springs. Worst offending!
- New 316 SS springs implemented. 3 of 8 cavities preserved VTA Q0 at ~ 80% level.
- 4 of 8 cavities preserved VTA Q0 at ~ 50% level.
 - 3 cavities could be further improved by reducing ambient field