
RF Power Klystrons & 20 Year Look

R. Nelson 7/15/15

RF Power

klystrons

$8 \ge 13 \text{ kW}$ klystrons

Why A klystron?

- Best (only) choice at the time 1988
- Easy to use: Input (drive), output (to CM), power source (CPS)
- High gain
- Moderate efficiency, when operating saturated
 - We don't run there
- Existing design tweaked for frequency and power
- 2kW became 5kW (later 8), 1.3 GHz to 1.497 GHz
- Water-cooled (most heat dumped into water)
- 33% efficient (rated power)
- A custom solution for our requirements

RF Power

- Only klystrons were considered
- 5kW saturated power using klystrons
 - Up to 8 kW (FEL & 0L04)
 - 42¹/₄ cryomodules + capture = 340 klystrons
 - Initial purchase: 350
 - 24 in FEL zones, 4 for cavity testing
 - 1 prototype in FEL buncher
 - Supplemental purchases: 120 for spares, FEL, 10 for 0L02 R100 upgrade
 - Rebuilds along the way
- 4 x 1 kW SSAs for separation
- IOTs: 4 for separation (499 & 748.5 MHz)

12 GeV Upgrade

- 80 cavities = 80 klystrons
- Higher efficiency, higher power
 - Purchase: 84 including first article
 - Also considered IOT & SSA
 - IOT concerns
 - » None built for 1.497 GHz
 - » Some in service at 1.3 GHz
 - » Higher cost, lower gain (high drive required - 100W preamp vs 0.1 – 2 W
 - IOT advantages: efficiency
 - SSA: Advancing, but not there yet (cost, size, capabilities)

How We've Fared

- Original spec asked for minimum 20k hour life
- Anticipated failures: 100 failures/yr. Didn't happen
- Repair contracts (3)
- Rebuild up to 3 times
- Early fails: catastrophic not cathode depletion
- Internal leakage on ceramic
- Thermal runaway (mod anode effects)
- Leakage still most common fail
 - Imposes limits on tube

Klystron Failures: Part 1

Year	Klystron	Cum Klystron	Klystron	Cum Klystron	Avg Klystron	Cum Avg Klystron
	Filament Hrs	Filament Hrs	Failures	Failures	Fil. Hrs / Failure	Fil. Hrs / Failure
1990	40,000	40,000	0	0	0	0
1991	150,000	190,000	11	11	13,636	17,273
1992	365,000	555,000	19	30	19,211	18,500
1993	390,000	945,000	12	42	32,500	22,500
1994	700,000	1,645,000	9	51	77,778	32,255
1995	2,268,000	3,913,000	34	85	66,706	46,035
1996	2,187,000	6,100,000	14	99	156,214	61,616
1997	2,546,000	8,646,000	12	111	212,167	77,892
1998	2,626,000	11,272,000	3	114	875,333	98,877
1999	2,277,000	13,549,000	12	126	189,750	107,532
2000	2,424,000	15,973,000	16	142	151,500	112,486
2001	2,538,000	18,511,000	5	147	507,600	125,925
2002	2,032,000	20,543,000	1	148	2,032,000	138,804
2003	2,309,600	22,852,600	12	160	192,467	142,829
2004	2,715,456	25,568,056	13	173	208,881	147,792
2005	2,657,232	28,225,288	3	176	885,744	160,371
2006	2,343,600	30,568,888	7	183	334,800	167,043
2007	2,077,440	32,646,328	14	197	148,389	165,717

Klystron Failures: Part 2

Year	Failed	Weeks Running
FY2008	9 (11?)	
FY2009	11	
FY2010	7	
FY2011	4	
FY2012	5	
FY2015	5	18

240

Klystron Procurement Times

- Recent: R100 upgrade klystron buy (10 pcs)
 - Req entered: 10/1/12
 - Signed/Bid: 10/3/12 12/20/12
 - Placed: 12/21/12
 - 1st received: 5/30/14
 - Last received: 8/26/14
 - 5.4 months ARO for 1st (8 mo from start)
 - Time to 10th unit: 8.3 mo ARO (11 mo from start)
 - Maximum delivery rate?

Klystron Pros & Cons

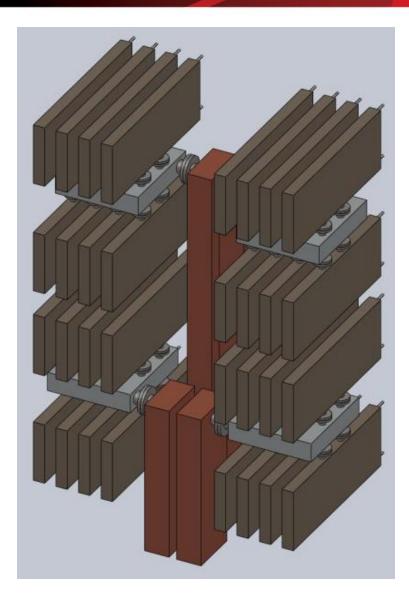
Pros

- Proven solution
- Long life
- Fits our sockets
- Easy replacement
- High gain
- High output power

Cons

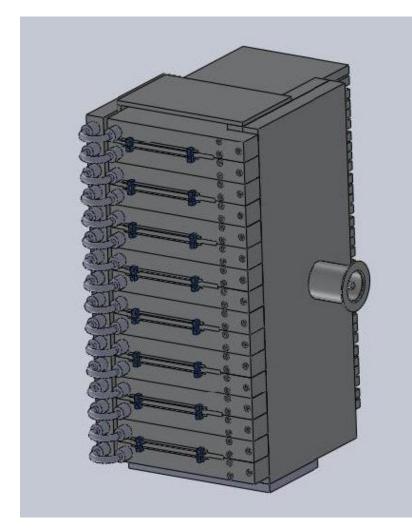
- Moderate / variable efficiency
 - Input power remains constant
- Rising replacement cost (like most things)
- "Dangerous" high voltage (...always touted by SSA proponents)

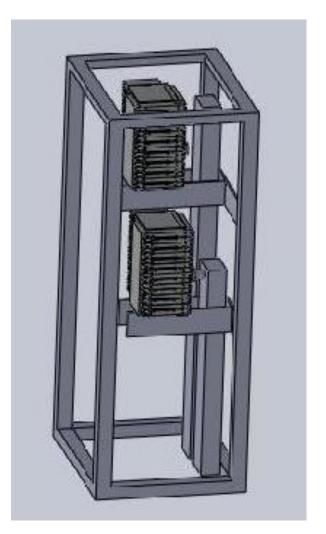
SSA (Solid State Amplifiers)


- Evolving, prices dropping, power per device up though 1.497 GHz not a mainstream frequency
 - Transistors developed for large markets we're a small user
- Generally higher efficiency (more constant)
- Complex designs (multiple stages, splitters, combiners, etc.)
- Soft failure modes (gradual power loss)
- "Safe low voltage operation" (50V/400A)
- Major hardware changes to drop in
- At \$11/w, 88k\$ per device X340 units = 30M\$

SSA SBIR Efforts

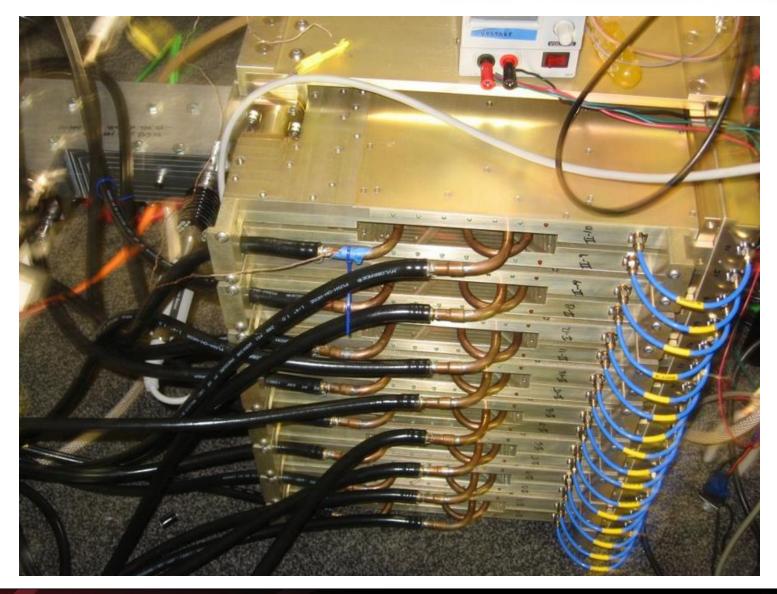
- Several attempts over 10+ years
- Nothing usable yet
- Price, unknown
- SBIR companies typically not production capable, nor are developing an "Innovative" design





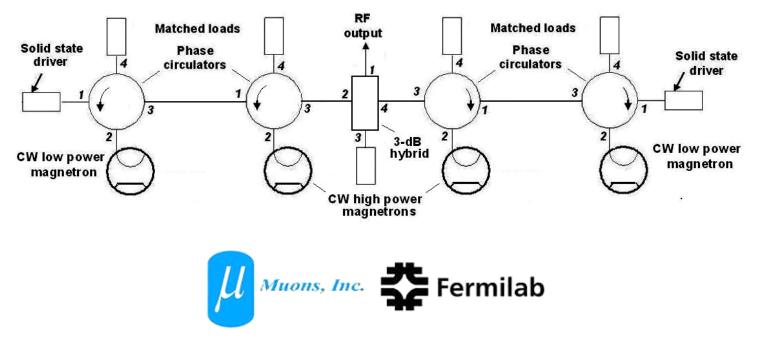
SBIR: Design to Fit Our Space

Multi-module amplifier could be installed in our HPA



SBIR SSA

Magnetrons


- Research being done here at JLab and looking with multiple approaches
- It's an oscillator industrial cookers, radar
 - Cost-effective power with high efficiency
- As an amplifier, more complex system (multiple magnetrons, waveguide components, etc.)
- Injection locking for frequency control, hybrid combining to adjust power? Modulated HV and magnetic?
- Not a drop-in replacement for our klystrons
- Significant changes a new system (as with SSA)

Other Magnetron Comments

- Shorter life (than klystrons or SSA)
- Applicability based on requirements
- Individual devices may cost less per watt, but additional hardware adds significant expense

MEIC RF Power (H. Wang)

	CEBA F 12GeV	E- Ring PEP-II 10GeV	Ion-linac Pb 60MeV/u	Booster		n-Ring Pb GeV/u	CC- ERL Cooler 55MeV	Crab (16+6)X 2MV
Frequency (MHz)	1497	476.3	162.5 /325	0.6-1.3	1.2-1.3	952.6	476.3 /952.6	952.6
Duty Cycle (%)	cw	cw	0.5	ramp	ramp	cw	cw	Cw
Cavity	sc 2K	nc	nc	nc	nc	sc 2K	nc/sc 2K	sc 2K
Max Peak Power(MW)	2.76	12.79	42		0.36	0.73	0.12	0.0023
Average Power (MW)	2.76	12.79	0.46	0.084	0.36	0.73	0.12	0.0023
Klystron DC-RF Efficiency (%)	35-51	67	50-60	na	na	50-60	50-60	50-60
Magnetron DC- RF Efficiency (%)	80-90	80-90	80-90	na	na	80-90	80-90	80-90
DC Power Save (MW)	3.4-3.8	3.1-4.9	0.26-0.35	na	na	0.41-0.55	0.07-0.09	0.0013- 0.0017

Future – Continue to Supply RF

- Continue buying present klystrons
 - ... unless requirements change
 - 2 vendors (one hasn't built it since our original buy)
 - Prices on the rise

1990	\$9k	Varian	50 45
2000	\$13k	L-3	
2012	\$32k	L-3	$\begin{array}{c} 30\\ 25\\ 20 \end{array}$
2014	\$43k	L-3	15 10
2016-35	TBD	??	
			1990 1995 2000 2005 2010

- Monitor options for alternate tech with major system changes
- Monitor integrity of other components

Klystron Health

- 2009 snapshot: 0.63/week of operation (.28 later)
 - How many weeks, how many failures?
- Expect rate to increase as EOL approaches
 - When?
 - Metrics not available to predict
- Spares: 12 on hand
- Installed: 16 poor (limited) tubes
- Cost: increasing
 - 20 per year proposal wasn't funded
- Arne suggests 500k\$/year (~10 units per year)
- A good start but start soon

Thank You

OK, we haven't run out yet, but we really should buy klystrons... crying wolf?

lefthanded toons.com