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Chapter 5

He II Heat Transfer

Chapter 4 emphasized the physical understanding of He II including heat
transport in the laminar flow and turbulent mutual friction regimes. These
mechanisms are fundamental to the behavior of Hell, although they
represent rather idealized conditions. Therefore, it is of interest to apply the
treatment of He II to practical heat transfer problems. In doing so, the con-
cepts already developed must be extended into regimes that are usable in
more practical situations. To be more specific, the emphasis of Chapter 4
has been to understand the interactive mechanisms. Thus, of principal con-
cern are the behavior of the transport properties including mainly the nor-
mal fluid viscosity %, and the mutual friction parameter 4. Of interest now
is to use these concepts in understanding such phenomena as the maximum
heat flux g*, the maximum energy deposition 4E*, and the maximum tem-
perature difference 4T,,, which can be either within the fluid or across a
solid—fluid interface. The goal of the present chapter is to establish a con-
nection between the engineering parameters g*, 4E*, and 47T, and the
physical propetties of the fluid and solid—fluid boundaries. In establishing
this connection there are a number of subjects of practical interest which
must be addressed. These include steady-state heat transport, forced convec-
tion, transient heat transport, Kapitza thermal boundary conductance, and
film boiling. Some of these phenomena are also important in pool boiling
He I heat transfer, which is the subject of Chapter 6.

Before delving into these individual subjects, it is worth describing, in
a general way, the heat transfer character of liquid He IL. This character in
fact does not deviate qualitatively from that of Hel, atbeit the numenical
values and physical explanation are considerably different. A typical
steady-state heat transfer curve for a metal surface at the end of a duct con-
taining He II is plotted in Fig. 5.1. These results are intended only to dis-
play the regions of heat transfer. As is demonstrated in what follows, actual
numerical values of these regimes are strongly dependent on geometry,
temperature, pressure, and surface conditions. For small 4T up to g*, the
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R , Fig. 5.1. A typical steady-state heat transfer curve
1 0 for a metal surface at the end of a duct containing
AT(K) Hell

surface temperature difference is governed by interfacial phenomena having
more to do with the character of the solid than that of the liquid helium.
This is called the Kapitza regime. There is no boiling occurring, rather the
temperature difference is a result of thermal impedance between the two
dissimilar materials, the metal or insulating solid and liquid He II. The
maximum heat flux ¢* is strongly geometry and helium state dependent. It
is characterized by the point where the helium adjacent to the interface
exceeds the local boiling point. The maximum heat flux is also time depen-
dent, achieving very high values for short-duration heat pulses. Once this
maximum is exceeded, the heat transfer converts to a film boiling process
where a film consisting of either He I, vapor, or both blankets the surface.
Finally, in some configurations there is observed a hysteresis in the heat
transfer curve exemplified by the requirement to reduce g below q* to
return to the Kapitza regime. This process is reasonably well understood in
Hel, being given by an engineering correlation. However, in He Il the
problem is more complex and has received less attention, owing to the
experimental difficulty of achieving steady state and strong variations with
configuration. It is the physical understanding of this heat transfer curve
that is the goal of the present chapter. The description is based heavily on
the heat transport modeling of He II contained in Chapter 4.

S.1. STEADY-STATE HEAT TRANSPORT

The first question to ask is: What are the limitations to heat transport
in a channel containing He II? Since the heat transport equations for He II
have already been developed, it should be straightforward to apply these
equations to determine practical limitations. In doing so, it is assumed that
the heat transport equations can be applied much the same as Fourier’s
law is applied to heat conduction in a solid. Note that He II cannot exist
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above the A-transition, 2.172 K at SVP, which at least establishes tem-
perature boundaries to the heat transfer problem. For a channel of finite
length L, as shown in Fig. 5.2, subjected to a constant heat flux g, there is a
temperature difference established across its length, that is 4T=T,—T,.
In general, this temperature difference occurs because of two mechanisms,
normal fluid viscous interactions with the boundaries and mutual friction
between the two fluid components. Since most practical applications call
for channel diameters and heat fluxes that are sufficiently large to allow the
mutual friction term to dominate, the normal fluid viscous interaction will
be neglected throughout this discussion. It is equally straightforward, in
principle, to solve the steady-state heat transport problem including the
normal fluid viscous term, although the mathematics are more cumber-
some.

5.1.1. Peak Heat Flux in Wide Channels

The turbulent heat transport equation in one dimension is written in
the form

dT

E=_f(T) q (.1

where f(T) = Ap,/(p>s*T?) and m is a numerical coefficient which theory
indicates should be equal to 3 but which experimentally has been shown to
vary from below 3 to nearly 4 as the temperature approaches T,.'"* Recall
that A4 is the Gorter-Mellink mutual friction parameter and p, and p, are
the normal and superfluid densities, respectively. The origin of (5.1) is dis-
cussed extensively in Section 4.5. The quantity f ~'(T) behaves much like a
thermal conductivity in that it is a fluid property that controls the tem-
perature gradient in the presence of a heat flux. It is therefore of interest to
understand the variation of f ~!(T) with the state of the helium. Plotted in
Fig. 5.3 is this function as it depends on temperature and pressure between
14K and T; and p=SVP and 2.5 MPa. Note that the temperature depen-
dence is quite strong with a maximum occurring around T=1.9K at SVP.
The pressure dependence is weaker and somewhat uncertain owing to the
limited quantity of data available for the pressure dependence of the Gor-
ter-Mellink parameter. In the data presented in Fig. 5.3, Vinen’s' values for
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Fig. 5.2. Schematic of a channel contain-
ing He Il. ; L
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Fig. 5.3. Heat conductivity function for ;urbulent He II. Symbols indicate the location of the
peak value.

the Gorter-Mellink parameter have been used. Furthermore, it has been
assumed that Aap?/p>, which is based on theory* and supported to some
extent by experiment.> Based on an empirical fit to the Gorter-Mellink
parameter, it is also possible to write an analytic expression for the heat
conductivity function,

SUT p)=g(T)[P (1 -17)]° (52)

where g(Ty)=p*s3Ti/Ax, t=T/Ti, S;=1.559J/gm-K, and A;=~
145 cm - sec. Note that at saturated vapor pressure, the maximum in (5.2)
occurs at 1.923 K, which is generally consistent with experiment. The values
presented in Fig. 5.3 are good to about £10% at saturated vapor pressure
and have been compared to experiment up to about 7 bars.’ At this time
results are not available at higher pressures.

If the interest is in the heat transport in a finite-length channel with a
sizable 47, it is possible to determine its value by integration of (5.1) and
matching boundary conditions. The maximum heat flux ¢* is then
established according to the maximum allowable temperature difference
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across the channel, which for a given bath temperature T is (T, —T,). It
follows that for a channel of length L

r=(thm) e

where for m=3, the heat conductivity function is given in (5.2). This
integral is mostly a function of T, and only weakly dependent on other
factors such as pressure. It is possible to define a function of the form

7. dT )1/"‘

n D (54)

arrm= 21 =(

which should be independent of channel length. Plotted in Fig. 5.4 are
experimentally determined peak heat fluxes ¢* for different channel lengths
varying everywhere from 0.1 to 3 m. Two different correlations of the data
are displayed: one for m=3 and the other for m=3.4. In either case, the
agreement between data and correlation is quite acceptable.

A similar analysis is possible to determine the pressure dependence of
the maximum heat flux g*. Integration of the corresponding heat conduc-
tivity function f~!(T, p) predicts a decreasing maximum heat flux with
elevated pressure. By analytic integration of (5.2), a prediction can be made
for the behavior of g* with pressure. The results of this analysis for four
bath temperatures are displayed in Fig. 5.5. Also displayed are experimen-
tally observed®¢ maximum heat fluxes for short channels up to 0.3 MPa.
The agreement is reasonable for the available data.

q L"’[( W/em?)e cm"’)

[o} . (o]
[X3 1.8 20 T A L6 1.8 20 Ta
Temperature ( K) Temperoture ( K)

Fig. 5.4. Generalized steady-state limiting heat flux in He II (as compiled by Seyfert®).
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Fig. 5.5. Maximum heat flux in a He II-containing channel as a function of pressure (data
from Ref. 3 and 6).

It should be kept in mind that the form and physical explanation for
heat transport in He II place no fundamental limit to the maximum steady-

- state value for ¢*. Everything depends on the allowable temperature dif-

ference. For example, with T,=18K and m=3, Fig. 54 predicts a
product g*L'? = 7.4 W/cm*>. Therefore, for a channel of length 10 um, this
analysis would predict a g* in excess of 70 W/cm?, truly a remarkable heat
flux for liquid helium temperatures.

5.1.2. Peak Heat Flux in Cylindrical Geometries

Besides the simple linear geometry represented by a one-dimensional
tube with constant heat flux, there has been considerable work carried out
on cylindrical geometries consisting of a heated cylinder or wire immersed
in a large bath of He IL.7-'° It is easy to show,'' by assuming that the Gor-
ter-Mellink equations apply in cylindrical geometry, that the steady-state
heat transport equation can be written

F-rma(2) (53)

where g, is the heat flux per unit area of the heated cylinder of radius r,.
The difference in (5.5) occurs because the heat flux decreases as the radius
increases. Comparison of (5.5) with experiment has given reasonable
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agreement, with essentially the same heat conductivity function as applies

5 in linear geometries.'!! In a similar fashion to that applied to (5.3),
integration of (5.5) leads to the maximum heat flux,

(ot ATy 56

w=(" 17 9

The important observation to make about (5.6) is that the peak heat flux
gd has as its scaling length r, rather than L as in the linear system. This
means that, provided the radius of the container is much larger than that of
the heater, the boundary conditions far from the heater should not affect
g* significantly. This is certainly contrary to the behavior in linear
geometries.

Unlike the linear one-dimensional system, there have been fewer
attempts to correlate the peak heat transport in cylindrical geometries with
that of (5.6). This is due in part to the lack of reliable data, which are more
difficult to obtain in cylindrical geometries. One such effort made use of
ire (data | data for small temperature differences 4T7~10mK in the range of
T,=18 K. It was found that the expression given by (5.6) is not entirely
suitable to correlate the experimental values of g§ without introducing a

ion for radius-dependent quantity y defined by
steady- ,
ire dif- r 3
ficts a qs =(3'ﬁ j i) (5.7)
m, this ro 41, f(T)
le heat
where T"~T,+0.01 K. ¢y was found empirically to depend on radius,
being roughly proportional to r}/2. The results of this correlation are shown
in Fig. 5.6. Note that y is always less than 1, indicating that the peak heat
flux is always less than that predicted by the idealized theory. This fact is
nsional somewhat surprising because the temperature gradients appear to be given
ied out accurately by (5.5)."
mersed
e Gor-
ly-state 5.1.3. Peak Heat Flux in Saturated He II
_ Until now, it has been assumed arbitrarily that the peak heat flux ¢* is
determined by the condition that the helium adjacent to the heater surface
(5.5) reaches the i-point. This condition does not always occur for reasons
having to do with the helium temperature distribution and the phase
lius r,. diagram, displayed in Fig. 5.7. First of all, because of the high effective
radius thermal conductivity of He II, it is reasonable to assume that the helium
onable within the heat transfer region obeys equilibrium thermodynamics. This
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Fig. 5.6. Empirical correlating function for heat transfer in cylindrical geometries (data from
references 8-10).

assumption allows the state of the helium everywhere in an experiment or
engineering system to be described by a point on the phase diagram.
Now consider a simple example, that of a heat transfer experiment in a
saturated bath of liquid helium boiling at 1.8 K, 1.6 kPa (12.5 torr). The
process is occurring at a certain depth below the liquid-vapor interface; see
Fig. 5.8. Thus, without any heat being applied, the state of the helium can
be described by location (D on the phase diagram in Fig. 5.7. The pressure
applied at the heat transfer surface is therefore P = Po+ pgh, where h is the
hydrostatic head of the liquid helium. If heat is applied to induce heat
transfer in the system, there will be a local temperature excursion 47 that
is determined by heat flow mechanisms. The local temperature increases
but the pressure is fixed, unless the experimental configuration is small
enough for the thermomolecular effect to make a significant contribution.
Avoiding this complication for the time being, we see that the temperature
will follow a horizontal line as shown in the inset of F ig. 5.7 until it meets
the liquid-vapor interface at which point boiling commences. The value of
the maximum temperature excursion is determined by the slope of the

vapor pressure CUI’VCZ_
p+ogh (d
4aT, = (—T) d 5.8
'[po dp i (58)
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and assuming the helium vapor to be an ideal gas, that is v, = RT/p, we
can approximate by

2
a7, =X (1 +§5) (5.10)
A Po

This expression is suitable for 47, < T,. For larger values of AT it is better
to evaluate the saturation temperature at the pressure corresponding to the
given hydrostatic head. This can be achieved most easily by using tabulated
values for vapor pressure.!?

As an aside it is worth mentioning that the above description is not
without controversy. In fact, a number of studies'>'* have attempted to
demonstrate experimentally the existence of superheated liquid in saturated
He II. However, all these experiments have been performed using He II
contained within a duct. The difficulty here is that the time constant for the
steady state in this geometry can be quite long, leading to the belief that
the observed superheat may be metastable. The resolution of this dilemma
will have to wait for future work in this area.

To attach some quantitative understanding to the above discussion, it
is worth noting that the pressure corresponding to the i-point is
p;=4.97kPa (37 torr), which is equivalent to a column of helium about
3.55m high. This fact is important because if a He II system with vertical
dimension larger than several meters is constructed, it would experience a
heat transfer limitation determined by the He II-Hel phase transition.
Alternatively, it is possible to create a condition whereby the pressure at
the heat transfer surface is arbitrarily high. This can occur in a closed-
volume He II region cooled by a heat exchanger to a saturated bath. The
pressure on the closed volume can therefore take on any value between
saturation and 2.5 MPa.

The subcooled He II state is shown on th phase diagram by position
@. Here it is assumed, for example, that the applied pressure is 100 kPa
(1bar). A similar argument to that presented above applies when deter-
mining the temperature excursion; however, in the subcooled case the
maximum temperature is governed by the A-transition (at p =100 kPa,
T;=2.163K). Thus, the limits are relatively well fixed and only weakly
dependent on applied pressure.

The conditions that exist once the maximum heat flux is exceeded are
of great importance to understanding the heat transfer in this regime.
Generally, there are two cases that can occur, each of which is associated
with one of the two conditions indicated on the phase diagram in Fig. 5.7.
For the saturation case which applies to position (), ¢* corresponds to the
helium adjacent to the interface achieving saturation conditions. A
schematic representation of the resulting physical condition for q>q* is
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/p, we shown in Fig. 5.9a. Displayed is a solid heat transfer surface blanketed by a
vapor film which in turn is bounded by the He II at local saturation tem-
peratures. This phase boundary is defined clearly because the He II-vapor
(5.10) transition is first order.
) The alternative film boiling heat transfer situation occurs whenever g*
is exceeded under subcooled conditions, such as @ in Fig. 5.7. For this
better case the phase transition is between He II and normal liquid He I. Since,
to the with rare exception, the maximum heat flux in HeI is substantially less
ulated than that in HeII, exceeding ¢* under subcooled conditions invariably
results in a double transition, first creating a film of liquid He I followed by
is not boiling of the HeI to form a vapor film. This triple-phase phenomenon
ted to brings all three helium states in close proximity to the heat transfer inter-
urated face. A schematic representation of this process is shown in Fig. 5.9b.
HeIl Through the He II-He I interface, shown as a dotted line in the figure, the
‘or the density p and temperature T should be continuous. Recent visual
of that experiments of boiling in saturated and subcooled Hell have allowed
emma observation of the interfaces between the vapor-Hel and the He I-He Il
phases.’S The latter observation is particularly significant since the physical
ion, it properties of helium should be continuous through the interface.
int is
::;z: 5.14. Forced Convection Heat Transfer
ence a The subject of steady-state heat transport would not be complete
isition. without some discussion of the effect of forced convection on the tem-
ure at perature gradient and peak heat flux. This subject is a somewhat more
sJosed- general heat transport problem than has been considered so far because it
h. The includes an additional variable, the net flow velocity v. Forced convection
stween was introduced in Chapter 4 as part of the two-fluid model applied to He 11
heat transport.
Jsition Since there have been fewer experimental investigations relating to for-
0 kPa ced flow He II heat transport, the analysis of the problem is incomplete. A
deter- general configuration to consider is shown in Fig. 5.10. A channel of con-
se the stant cross section and length L connects two reservoirs at temperatures T
0 kPa, and T,. Steady-state heat is applied to one end of the channel and the tem-
wveakly perature difference is established, ultimately leading to the peak heat flux
g*. In fact, this configuration is not easily obtainable because a tem-
led are
‘egime. 7
>§;t ed ///S / vi He I a
ig. 5.7.
to the .
ms. A Fig. 59. Schematic of boiling in Hell: (a) 7/5// v} Hel:  Hem S
>q* is saturation condition and (b) subcooled condition. L :
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L R

Fig. 5.10. Schematic  represen-
tation of configuration required
q to obtain forced flow He Il

perature difference normally corresponds to a pressure difference under
saturation conditions. However, it is possible to create the appropriate
circumstances with a frictionless, massless piston that forces the liquid from
volume 1 to volume 2 at velocity v. _

To treat the problem of forced flow He II analytically, it is necessary
to solve the heat balance equation that describes the system of interest.!” In
developing this equation, two fundamental assumptions are made about
the physical behavior of He II. These assumptions are not proved here but
are justified by the analysis of experimental data.

The first assumption is that the heat flow by internal convection
mechanisms is not affected by the net velocity of the fluid. This point has
been discussed as part of the two-fluid model in Chapter 4. As an aside, it
is possible to understand physically the invariance to velocity by analogy
to an ordinary heat conduction mechanism. In the latter case, heat trans-
ported by conduction in a moving medium is no different from that of the
medium at rest provided v<c, the speed of sound. Furthermore, by
making the normal set of simplifications to reduce the problem to one-
dimensional heat flow in turbulent HeIl, the nonlinear Gorter~Mellink
equation can be used to describe the heat conducted by internal convec-
tion,

1 dn\"?
.=~ (7pz (5.11)
where f(T) is the same temperature-dependent heat conductivity function.
The power law dependence of (5.11) has been assumed to be 1/3 although
the analysis follows the same procedure if a different coefficient is assumed.
The second assumption is that the heat carried by ordinary convection
mechanisms can be described by the flow of enthalpy between two points
in the system,

qfc=pV Ah (5.12)

where 4h=h, — h, represents the specific enthalpy difference between tem-
peratures T, and T, that is, 4h= (T2 C, 4T. For simplicity (5.12) assumes
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the fluid density to be constant, which is a reasonably good approximation
for He IL.

The above two assumptions lead to an equation that is appropriate for
analyzing the temperature profile in forced flow He II. This is achieved by
combining differential forms of (5.11) and (5.12) and equating them to the
time rate of change of the local enthalpy. The resultant equation is similar
to the time-dependent heat equation for static He II except that it contains
the extra convection term. In one dimension this expression takes the form

(MR B

Given the boundary conditions for a channel containing Hell, it is a
straightforward problem to integrate (5.13) and thus determine the tem-
perature profile as a function of flow velocity and time. Unfortunately, this
solution requires numerical methods because the equation is nonlinear and
the functions such as # and f have rather strong temperature dependencies.

A good approximate solution to the steady-state problem, dh/dt =0,
can be obtained by assuming constant properties with 4h=C, 4T. This
approximation leads to an exactly soluble differential equation. By making
the following change of variables

T-T,

*= 5.14
(2] T.—T, (5.14a)
=z 5.14
x*=7 (5.14b)
and
K =2pC,v(f/L)'*(T, - T,)** (5.14c)
an exactly soluble form of the Bernoulli equation results,
d *@)”’] K’ do*
- +— =0 5.15
dx* [( dx* 2 dx* (515)

which coupled with the appropriate boundary conditions can determine the
steady-state temperature in a one-dimensional channel.

The results of this analysis for a channel of length 2L with its center at
T, and ends fixed at T, are displayed in Fig. 5.11. The left-hand side of the
figure can be interpreted as the case where the velocity of flow is opposite
to the heat flow by conduction while the right-hand side refers to these
quantities working in parallel. Note that the limitations of this solution are
primarily in terms of the temperature dependence of the heat capacity C,
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Fig. 5.11. Normalized temperature distribution in forced flow He II with fixed temperature
boundary conditions X’ =2pC,v(fL)"? (T, — Ty)*>.

and heat conductivity function (7). The solution should be quite good for
small AT =T, — T, such that 4T/T < 1. The impact of this approximation
is seen in the zero velocity profile (K’ = 0) which is linear, while in fact for
large 4T the profile has considerable curvature. Also note that the nonzero
velocity profiles for positive and negative K’ are symmetric about the line
corresponding to K’ =0.

There have been several reports of measured temperature profiles
within forced flow He II which have been compared to numerical analyses
based on the theory described above.>'® In general, these measurements
have shown temperature profiles analogous to those displayed in Fig. 5.11.
The numerical analysis is more exact because it includes the temperature
dependence of the helium properties.

Given the solution to the temperature profile it is straightforward to
determine the total heat transport, ¢ =g, +¢,, by integration of (5.15).
This result can be normalized to the form

qa__ de‘)"’ K o
o ( =) +59 (5.16)

where K’ is defined above and

o= (I%—’)m (5.17)
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Fig. 5.12. Normalized peak heat flux for forced flow Hell with K =2pC,v(/L)'?
(T, = T)*

which represents the heat carried by the internal convection mechanisms
for He II having zero velocity (K’ =0). The results of this calculation are
shown by the solid curves in Fig. 5.12. Although there is considerable
enhancement of heat transport in the direction of flow even for small X',
values of K’ greater than unity are required before the total heat transport
is enhanced significantly in a midpoint heated channel of length 2L. This
result occurs because forced flow suppresses the total heat transport when
the velocity and heat flux are antiparallel.

Johnson and Jones'? have carried out an extensive investigation of
heat transport in saturated forced flow HelIl. In their experiment a
pressure difference was maintained by adjusting the relative height of the
two baths. Results obtained required sizable corrections because tem-
perature differences in saturated He II produce a corresponding pressure
difference. A comparison of data and analyses is displayed in Fig. 5.12.
Although the general trends appear correct, there is considerable dis-
crepancy between the experimental data and theory, particularly for the
cases where 4T is small. A more recent work by Kashani and Van Sciver'®
has shown much closer agreement between theory and the experimental
maximum heat flux.



	p01
	p02
	p141
	p142
	p143
	p144
	p145
	p146
	p147
	p148
	p149
	p150
	p151
	p152
	p153
	p154
	p155

