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Outline 

• Problem and goal 
 
•One Objective minimization 
 
•Multi-objective optimization 
 
•Current and future work 

This talk is based on the previous work by Balša Terzić, 
Alicia Hofler,  Geoff Krafft, Jay Benesch, Arne Freyberger, 

Adam Carpenter, et al.  
 



Background and Motivation 

•  Problem 

•  Find the optimal set of cavity gradients to simultaneously minimize trip 
    rates and minimize the dynamic heat load (electricity bill) 

•  Monthly electricity bill for JLab is measured in millions of dollars  
    – a large part of it is cryogenics 
    Even modest improvements in cooling may translate into millions $ in savings 

•  Dynamic heat load and trip rates are competing objectives  
    – it is a multi-objective (2D) optimization problem   

•  Goal  

• Provide a set of feasible solutions 
   (Pareto-optimal front) showing the  
   trade-offs between competing objectives 
   heat load and trip rates 

Heat Load 

Pareto-optimal front 
(non-dominated solutions) 

High trip rates 
Lower cooling cost 

Low trip rates 
Higher cooling cost 

A 

B 
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1D optimization 
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Model of the Problem 

•  The cavity power transfer to the liquid helium for CEBAF SRF cavities: 

 

 

• The cavity trip rate: 

 

 

•The constraint: the total energy gain in the linac is within 2 MeV of a 
prescribed energy Elinac. 

 



1 Obj. Minimization Using Lagrange Multipliers 

• Use Lagrange multipliers to minimize the heat load only or trip rates only 

• Single-objective  optimization problem: 

   Lagrangian: 

 

  

    Nc+1 equations: 

 

    Solve for Gi and 𝜆: 

 

 

    Conserved quantities:  
    

   
 
 

    



1 Obj. Minimization Using Lagrange Multipliers 

• Use Lagrange multipliers to minimize the heat load only or trip rates only 

• Single-objective  optimization problem: 

   Lagrangian: 

 

  

    Nc+1 equations: 

 

    Solve for Gi and 𝜆: 

 

 

 

 

 

    Conserved quantities:  
    

   
 
 

    

[Benesch et al. 2009 JL-TN-09-41] 



1 Obj. Minimization Using Lagrange Multipliers 

• Single-objective (1D) analytical solutions with Lagrange multipliers are 
   pedagogic, but also somewhat useful 

• Give us the limits of the optimization 

Solution A: 
Minimize Heat Load 
(Disregard Trip Rates) 
Heat Load ~ 1015 W 
Trip Rate ~ 6x109 per hour 

Solution B: 
Minimize Trip Rates 
(Disregard Heat Load) 
Heat Load ~ 1405 W 
Trip Rate ~ 0.74 per hour 

Solution A 

Solution B 

North Linac 
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Numerical Optimization Method: Genetic Algorithm 

• This is a high-dimensional, non-linear, multi-objective optimization problem 

• Traditional, gradient-based methods (Newton, conjugate-gradient,  
steepest descent, etc…) are not globally convergent: 

• Get stuck in a local minimum and never come out 

• Final solution depends on the initial guess 

• Genetic algorithm (GA) is what is needed here: globally-convergent, 
multidimensional, multi-objective, robust, non-linear optimization 

• Platform and Programming Language Independent Interface for Search 
Algorithms (PISA) from ETH Zürich and Alternate PISA (APISA) from Cornell  

• We used GAs before on a number of problems in accelerator physics 
[Hofler, Terzić, Kramer, Zvezdin, Morozov, Roblin, Lin & Jarvis 2013, PR STAB 16, 010101] 

• Heat load & trip rate optimization by GA is published 

   [Terzić, Hofler, Reeves, Khan, Krafft, Benesch, Freyberger & Ranjan 2014, PR STAB 17, 101003] 



Multi-Objective GA Minimization: Results 

• GA simulation: 512 ind. per gen. on MacBook Pro 2.7 GHz Intel Core i7   

• Pareto-optimal front – textbook behavior 

•  Longer simulation, more generations – better results (front creeps left) 

•  Execution time rough estimates: 3 minutes per 4000 generations 



Multi-Objective GA Minimization: Results 

• GA simulation: North Linac, 512 ind. per gen., 16000 generations 

Solution A (1D):  
Minimize Heat Load 

Solution C (1D):  
Minimize Trip Rates 
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Summary of Previous Work 

•Simultaneous minimization of the heat load and trip rates using GA 

•  Provides an entire Pareto-optimal front of solutions 

•  Performance of C++ prototype:  

Full simulation (32k gen.): < 30 min.  “Quick peek” (4k gen.): ~ 3 min. 

•  Made contact with 1D minimization using Lagrange multipliers 

•  Made contact with Arne’s first GA implementation (fix TR, minimize HL)  

       For TR=5/hour, 13% lower heat load by multi-objective optimization  

•  Robust for errors in Qi and Gi 



Current & Future Work 

•Current work 

• Developing user friendly GA package in C++ (A. Holfler & A. Carpenter) 

 

 

 

 

 

 

 

 

• Investigating  particle swarm (H. Zhang)  

•  Future work 

• 𝑄𝑖(𝐺𝑖) for all cavities 

• Compare GA with particle swarm  

• Increase the efficiency by parallelization on modern hardware 

Problems (Previous GA system) Solution (Standalone GA library) 

Suitable for Propotyping:  
• Originally developed as GA test bed 
• Inefficient process management 

Cumbersome to maintain and use 
• Multiple versions with different capabilities 
• Not well documented 

GA processing entwined in the system 
• Not easily extracted or repurposed 
• GAs not available for general use outside the 

system 

• Available for studies and control room 
applications 

• Software development cycle: Written 
requirements, system design, design 
review, and user documentation 

• Support GAs most often used in 
accelerator physics applications: 
SPEA2&NSGA_II* 

• Easy to configure and use 
• Option to support particle swarm 

* Strength Pareto Evolutionary Algorithm 2 (SPEA2) 
    Nondominated Sorting Genetic Algorithm II (NSGA-II) 

 





Backup Slides 

* Strength Pareto Evolutionary Algorithm 2 (SPEA2) 
Nondominated Sorting Genetic Algorithm II (NSGA-II) 

 



6 GeV-Era Simulation with 12 GeV Consequences 

•  We model PVDIS Run from 2009 to make contact with earlier work 

•  This approach is not tied to a particular configuration 

•  Model for trips in old cavities given in Benesch et al. 2009 JL-TN-09-41 

•  lem.dat file provides all information needed for the simulation 
 
 
 
 
 
 
 
 
 
 

•  Same formalism will be used for the 12 GeV configuration whenever 
    new Qs, DRVHs and Bs become available for the new cavities 

Name Loaded Q DRVHi PASKsigma Fi [MV/m] Bi Qi Li [m] 

No trip model Parameters used in the simulation 



Earlier Work on the Subject: Arne’s GA Simulation 

•  Used a perl-based GA algorithm (for details see JLAB-TN-12-057)  

•  perl is an interpreted language  slow (> 1 day for 150 generations) 

•  From the footnote – acknowledgement that we can do better:  
 “Improvements in execution speed of the GA would be possible  
   utilizing a compiled programming language.”  

•  Arne’s work provides an important proof-of-concept 

•  Key differences between Arne’s and this implementation 

• 1D optimization (minimize HL, TR fixed) 
• 90% of initial population of gradients is  

±2 MV/m from initial value 
• Focused on the premier individual from  

each generation (top fitness) 
• Interpreted perl 

• 2D optimization (minimize both HL, TR) 
• Unbiased sampling of the entire  

allowed search space [3, DRVHi] 
• Provide a Pareto-optimal front of  

feasible solutions (enable trade-off) 
• Compiled C++ 



Comparison to Arne’s Results: North Linac 

Trip Rate  = 5 
Heat load = 1094 W 
(~4% from the minimum of 1048 W) 

Trip Rate  = 5 
Heat load = 1285 W 

Reduced heat load by 15% in the North Linac 

Our Study Arne’s Tech Note (Fig. 2) 

Trip Rate  = 64 
Heat load = 1048 W 

Trip Rate  = 0.4 
Heat load = 1377 W 



Comparison to Arne’s Results: South Linac 

Trip Rate  = 5 
Heat load = 1016 W 
(~3% from the minimum of 996 W) 

Trip Rate  = 5 
Heat load = 1150 W 

Reduced heat load by 12% in the South Linac 

Our Study Arne’s Tech Note (Fig. 5) 

Trip Rate  = 996 
Heat load = 988 W 

Trip Rate  = 0.13 
Heat load = 1406 W 



Convergence of the Pareto-Optimal Front 

32000 Vs. 4000  NL ~ 1% (~10 W) 
32000 Vs. 8000:  NL ~ 0.5% (~5 W) 
32000Vs. 16000: NL < 0.2% (<2 W) 

32000 Vs. 4000:  SL < 1% (<10 W) 
32000 Vs. 8000:  SL < 0.5% (<5 W) 
32000 Vs. 16000: SL < 0.2% (<2 W) 



Sensitivity to Measurement Error 


