RF Separation Status

Mark Wissmann July, 2015

Outline

History

Update Of Three Tasks:

- Resonant Control
- Cavity Tuning
- IOT Power Output Adjustment/Test

Spring History

During the spring run we extracted ~9.6 GeV beam and problems and concerns were uncovered.

- Large Frequency Shift During Operations
 - Water Control System Limited
 - Cavity Tuning Not Optimized
- The IOT Amplifier Near Its Set Power Limit.
- A bit Less Separation Than Expected

Water Controls Update

- Preliminary test was performed for two weeks after suspending machine operations.
- FINDINGS: (Tomasz Plawski's ELOG 3343104)
- Operated 2.2 kW into a cavity.
- The cavity was controlled using an upgraded heater chassis.
- Startup and operation to 2.1 power achieved
- Build of upgraded water system scheduled for completion by mid-August

TEST Water Enclosure

Cavity Setup Update

- After water controls testing, all four cavities were removed for bench tuning and setup. Tasks:
 - Establish field flatness in each cell
 - Install a second pickup loop
 - Fiducialize each cavity
 - Reinstall Cavities

Simulation Results

Simulation Results

H-Field at Crest

Туре

Phase

Typical Spring Run Cavity Setup

Cavity Setup With Fields Flat

RRFAE00A's Final Bench Setup

Bead Pull In RF Structures Lab

RRFAE00A Setup For Beadpull

Cavity Setup Update

- Establish field flatness in each cell

RRFAE00A set and in high power test RRFAE00D set and soon on Alignment Stand RRFAE00B & RRFAE00C awaiting Pickup Loops

- Install a second pickup loop

RRFAE00A, **RRFAE00B** and **RRFAE00C** need pickups. They arrived from MDC yesterday.

- Fiducialize each cavity

RRFAE00A, **RRFAE00B** and **RRFAE00C** complete.

- Reinstall Cavities

Plan to be ready by first week in August

IOT Power Update

- Goal is 14 kW Steady Power
- To do this the HVPS needs to provide ~24 kV
- The transformer taps where changed and the power supply is at 22 kV.
- At 22 kV 14 kW has been achieved but it drifts.

This drift is believed to be from IOT Cavity heating

- Drift can also be addressed by IOT tuning
- Possible HVPS transformer tap change

IOT Power RUN

- JSA-

Summary

- Resonance Control Test complete and construction of chassis on schedule for Mid August Delivery
- Cavity tuning optimization on schedule but benefit is in question.
- IOT power upgrade is still in progress and it appears power is achievable and can be stabilized with IOT tuning at the higher powers.

Questions?

Inside A Separator Cavity

Tuning Plate Removed

750 MHz Cavity Couplers

Prototype Under High Power Test

Temperatures in the Power Coupler

Office of Nuclear Physics

RESONANCE CONTROL CRITERIA

Cavity Temp and Frequency Response

Powering A Cavity With Solid State Amp

Resonance Control

PLC Controller

Heater Module

Cavity Temp. vs. Frequency Response

