Ryan Slominski

Outline

- Overview and Problem Statement
- Catching and Recording
- Alerting, Resetting, and Masking
- Reporting and Analyzing
- Known Issues
- Conclusion

Overview

What problems are we solving?

- Maintainable, consistent, correct: CED / OTF
- Transparent, accountable: web-accessible archived data
- Easy to use: mask by destination for example
- Improve machine performance: understand / minimize trips

CATCHING AND RECORDING

FSD Lib

- Common library of FSD functions
- Used by all HLA FSD applications
- Monitors FSD System status
- CED driven
- Logic to interrogate devices

Who Faulted?

FSD Database

- Stores Trips
- Each Trip is due to a fault in the master node and zero or more child node faults
- Each faulted Node has zero or more faulted channels (zero = Phantom)
- Each faulted channel references either a child node or one or more devices
 - Referenced entity may not be faulted (Phantom)

FSD Fault Logger

- Continuously running daemon process
- Logs information into the FSD Database

ALERTING, RESETTING, MASKING

FSD Overview Screen

- Graphical view of FSD
 Tree and its current masking and fault state
- On-the-fly (OTF)

JTabs > Operations > FSD > Overview

FSD Fault Panel

- Displays textual description of faulted devices
- Reset option
- Current snapshot ondemand
- Continuously monitor root node state changes (faulted/reset) and display tree snapshot

FSD Reset Tool

- Command line application
- Used to reset the FSD Tree
- Can be invoked from Overview, Panel, or Masking GUIs via button

FSD Masking Tool

- New (reworked); still in acceptance testing
- Use to setup
 destination and system
 based masking of
 devices that should not
 propagate faults

JTabs > Operations > FSD > Masking

REPORTING AND ANALYSIS

Trip Database Query Tool

- Query Trip History
- Filter results
 - Machine beam state
 - Trip duration
 - Date range
 - CED Type
 - CED Component
 - HCO System
 - And more...

https://accweb.acc.jlab.org/dtm/trips

Trip Summary Report

- MCC 8:00 AM Summary
- Configurable Histogram
 - Date range + bin size
 - Legend Data
 - And More...

https://accweb.acc.jlab.org/dtm/reports/fsd-summary

KNOWN ISSUES

Device Interrogation

- We don't always know how to query various devices on a faulted channel to find culprit(s)
 - We must record all devices on channel as faulted
 - If only one device on channel then no issue

First Fault Tracing

- Faults cascade; but difficult to know which came first; some may truly be concurrent
- FSD Lib just reports all faulted nodes
 - Web Histogram indicates "Multiple/Other" when more than one of differing types
- Scan rate and clock skew = race condition
 - root node may indicate fault before leaf node that generated it does! (shown in archiver)

Phantom Faults

- Master node signaled, but either:
 - No leaf node admits fault
 - A leaf node admits fault, but no channel/device does
- Costs downtime / confusion
 - 685 Phantoms in Spring
- Many possible causes
 - Hardware / IOC software sync
 - Incomplete / Incorrect device interrogation rules (dtm1442)
 - Scan-rate timing issues
 - And more...

Conclusion

- CED and FSD Lib ensure all apps have consistent view
- Trip reporting available on web
- To Improve FSD Apps & Operator experience we need to:
 - Minimize Phantom Faults
 - Explain device interrogation details
 - Synchronize FSD System?

Bonus: What is wrong here?

Interesting Read

- J. Perry and E. Woodworth. The CEBAF Fast Shutdown System. CEBAF PR-90-15.

 September 1990
 - In 1990 we needed 24 μs to shutdown, and at that time burn through was in 30 μs .
 - We improved FSD speed for 12GeV, right?