

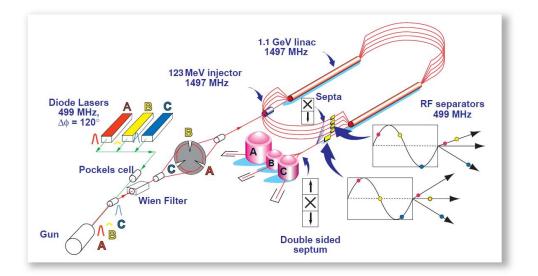
OPS StayTreat Goals

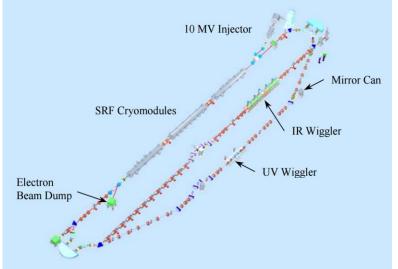
The purpose of this two day workshop is to provide a forum for presentations and discussions on CEBAF operations during the recent commissioning operations. The presentations should present a balance of successes and shortcomings, with the ultimate goal of improving CEBAF operations, prepare for the challenges of 12GeV operations and establishing routine multi-user operations at the 12GeV design energy.

Additional items to be addressed during the workshop include, improving user<->OPS<->Eng communications, reducing the duration for CEBAF restoration and configuration change, reducing the duration for Hall setup, improving CEBAF reliability, and regaining the confidence of the user community that CEBAF and OPS can support the experimental program.

Outline

- Accelerator Operations Overview
- 12GeV Upgrade
 - Overview
 - Beam Commissioning to date
- Plans for Beam Operations at Design Energy
 - Summer 2015 Shutdown Tasks
 - Gradient Maintenance and Helium Processing
 - Fall 2015 Beam Plan
- Summary/Agenda

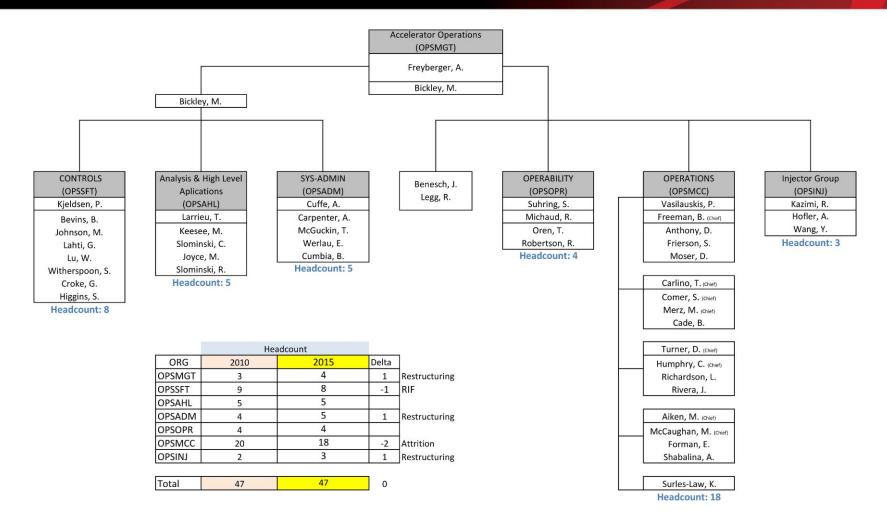

Jefferson Lab


Accelerator Mission

Operate and upgrade the JLab accelerator facilities

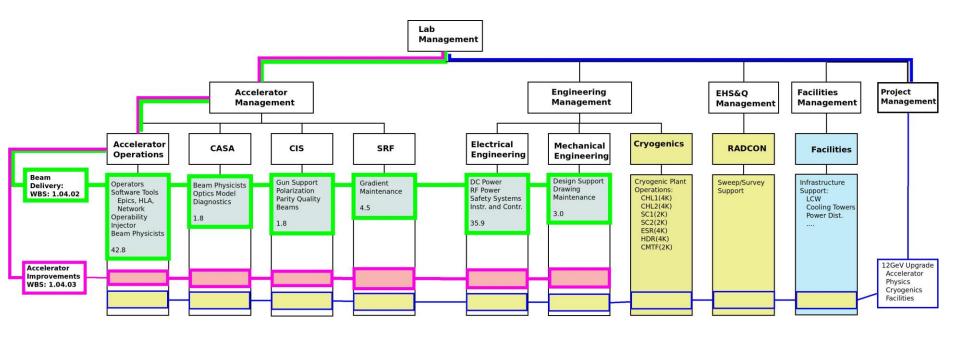
JLab accelerator facilities:

- 1. CEBAF, Continuous Electron Beam Accelerator Facility
- 2. LERF, Low Energy Recirculator Facility (formerly called the FEL).



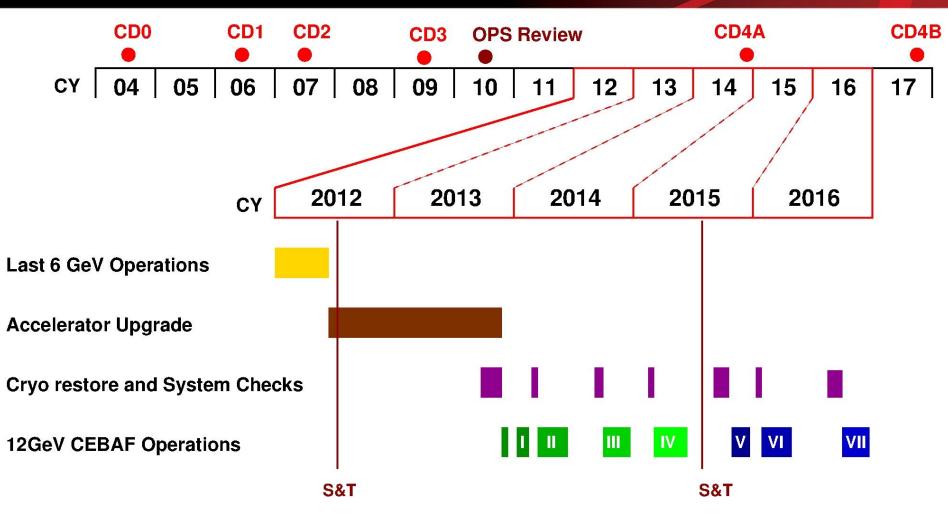
Jefferson Lab

Operations Department

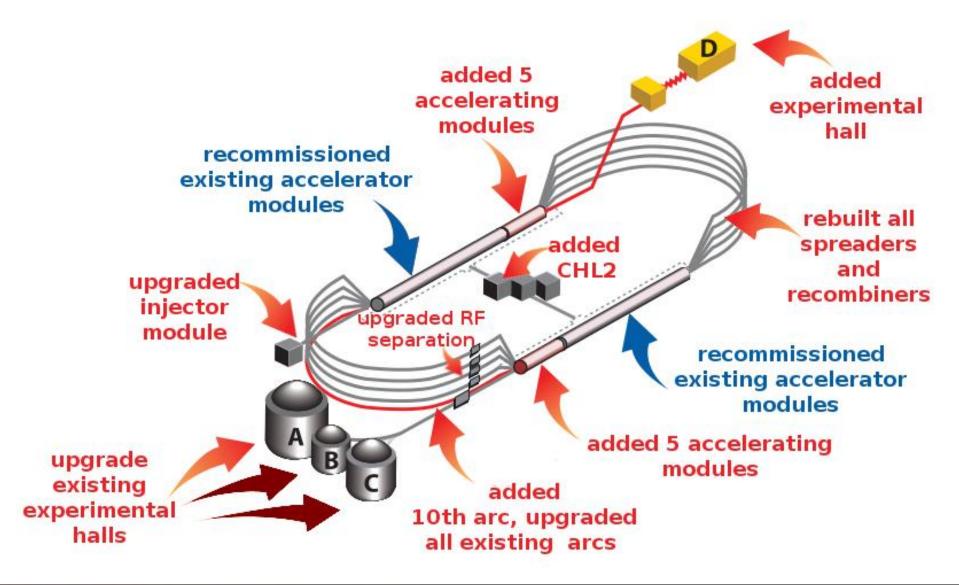


Presently have one open operator position

CEBAF Beam Delivery(WBS)


- 90 FTE (Beam Delivery 1.04.02) for FY15
- Work plans are developed each year to account for:
 - Operating weeks
 - Expected machine performance
 - Preventative maintenance tasks

12GeV Timeline



First extensive S&T review in the 12GeV era, mini-S&T reviews held in 2013 & 2014

12GeV Upgrade Overview

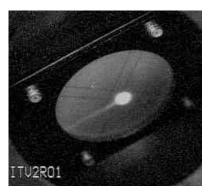
First Beam Operations

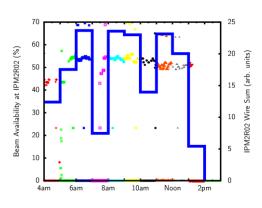
Run I (E_{pass} = 2.2GeV)

- 2013-Dec-13 to 2014-Feb-06
- Establish 1-pass beam
- 12GeV Project KPP: 2.2 GeV/pass of energy gain

Run II (E_{pass} = 2.0GeV)

- 2014-Mar-07 to 2014-May-11
- **12GeV Project KPP**: 5.5 pass beam to the Hall-D dumplet
- **Operations Goal**: Demonstrate full injection energy (123 MeV)
- **Operations Goal**: First multi-pass beams in the 12 GeV era
- Operations Goal: CW operations to Hall-A, 3-pass beam with E>6 GeV




Run I

2.2 GeV/pass 2014-02-05

Beam Arc2 viewer

Availability > 50%, 8h run

12GeV Project KPP Achieved

			2014-Feb		
Linac	Туре	$< E_{maxOPS} >$	<gmes></gmes>	$\frac{\langle GMES \rangle}{E_{maxOPS}}$	
		(MV)	(MV)	(MV) (%)	
NL	C20	8.61	7.19	84	
NL	C50	11.71	11.03	94	
NL	C100	20.86	17.59	84	
SL	C20	9.09	7.05	78	
SL	C50	11.55	10.06	87	
SL	C100	19.77	16.66	84	
БЦ	0100	10.11	10.00	01	

- E_{maxOPS}: maximum gradient during commissioning
- GMES: Operational gradient
- Majority of downtime due to C20 trips

Based on this and other data from Spring2014 operations, the estimated maximum 5.5pass energy with less than 10 trips per hour is:

• 11.25 GeV, or 6% below design, or 2.05GeV/pass.

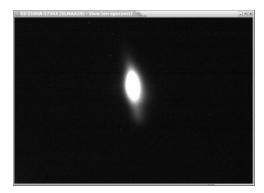

10

Run II: Milestones

Multi-pass (3-passes) 2014-03-15

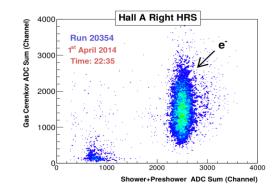
Initial 1st to 2nd pathlength difference

>6 GeV to Hall A


2014-04-01

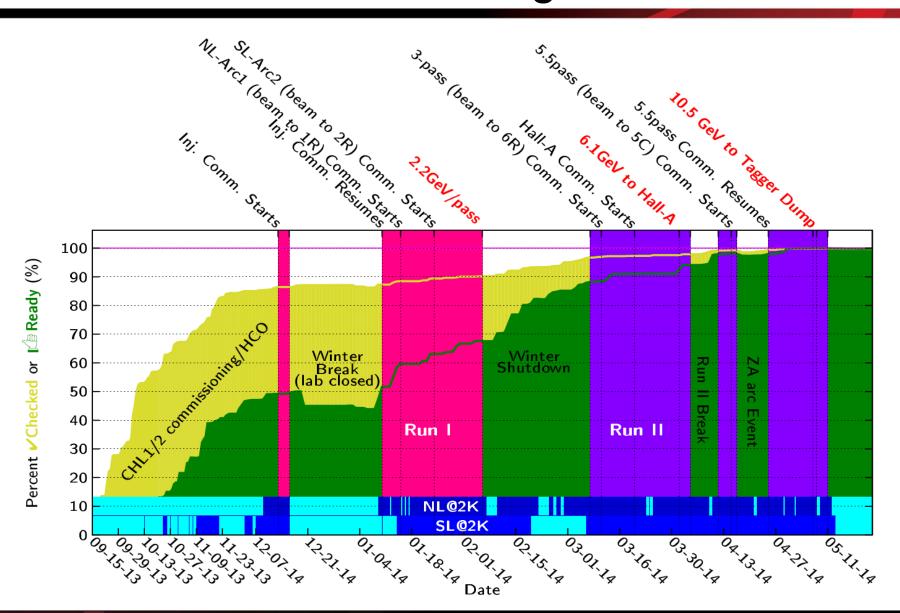
Beam profile in A line

5.5 Pass Beam 2014-05-09


Synchrotron Light in Arc10

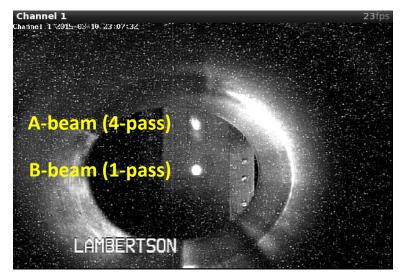
1st, 2nd, 3rd pass pathlength difference after MO adjustment + arc offsets

Elastic events in A Spectrometer

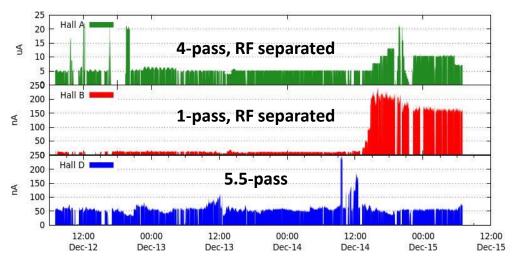

6-beams in North Linac

ength difference

Run I and II Progression



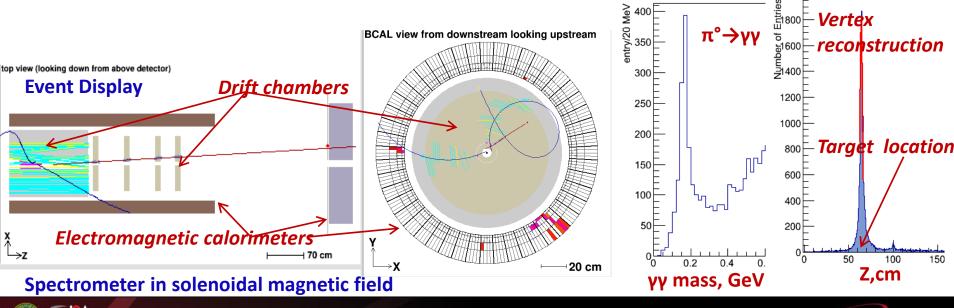
Run III ($E_{pass} = 1.8 GeV$)


2014-Oct-08 to 2014-Dec-21

- CW beam, E>10 GeV, 5.5pass beam to Hall-D
- First photons into the new experimental hall
- 12GeV Project KPP: Hall-D detector commissioning
- Operations Goal: RF separation (1-4 pass), first simultaneous multiple users in the 12GeV era
- Operations Goal: Establish 2-hall operation

Separated beams on beam viewer

Sustained 3-Hall operations



Hall D Commissioning

- Hall D: facility for experiments using linearly polarized photon beam
- Main goal: search for gluonic excitations in light meson spectra (GlueX experiment)
- Photon beam line + large acceptance spectrometer for charged particles & photons
- Commissioning with beam Nov. & Dec. 2014
 - Program Goals demonstrated

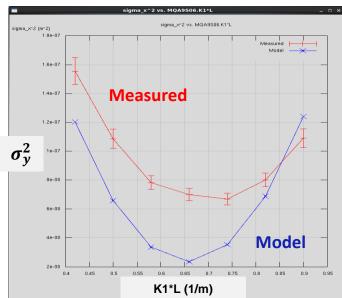
Results with preliminary detector calibration and alignment

Charged

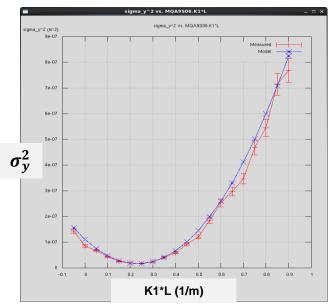
particles

tracking

Jefferson Lab


Neutral particles

reconstruction


Run IV ($E_{pass} = 1.9 GeV$)

2015-Feb-13 to 2015-May-18

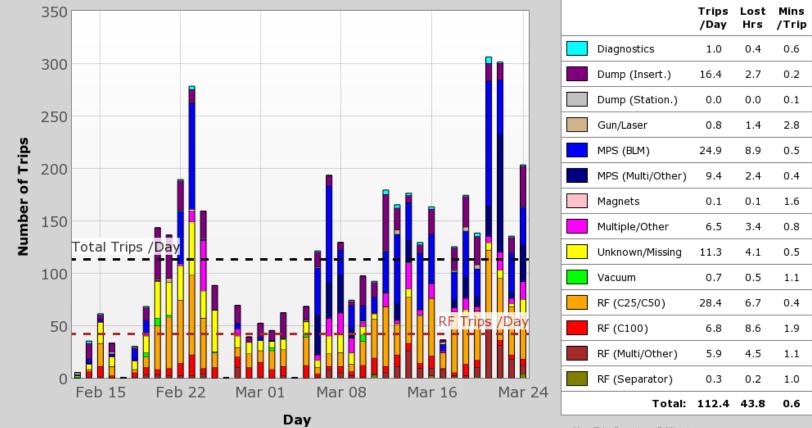
- Commission new 249.5 MHz laser/injector configuration
- Commission new 750 MHz 5-pass separators
- Exercise new setup process and associated tools: New beam matching process
- Establish baseline emittance and bunch length evolution
- Support ~5wk "early Physics" Operation

Quad Scan: After match

Beam Emittance Evolution at 1.9GeV/pass

Table 3: Model and Measured Emittances (11 GeV)					
Region	Model $\varepsilon_{x}, \varepsilon_{y}$	Measured ε_{x} , ε_{y}			
	[nm-rad]	[nm-rad]			
Chicane	4.00 4.00	2.5±0.9 1.9±0.6			
Arc 1	0.41 0.41	$0.43{\pm}0.04 \hspace{0.1in} 0.32{\pm}0.05$			
Arc 2	0.26 0.23	0.50±0.10 0.31±0.10			
Arc 3	0.22 0.21	$0.63{\pm}0.05$ 0.72 ${\pm}0.07$			
Arc 4	0.21 0.24	$0.81{\pm}0.07 \hspace{0.1in} 0.65{\pm}0.10$			
Arc 5	0.33 0.25				
Arc 6	0.58 0.31	$0.48{\pm}0.05$ $0.66{\pm}0.04$			
Arc 7	0.79 0.44				
Arc 8	1.21 0.57	1.1±0.1 1.0±0.1			
Arc 9	2.09 0.64	3.1±0.2 1.9±0.3			
Arc 10	2.97 0.95	2.4±0.3 1.7±0.4			

Presented at IPAC15: Satogata (WEBD1), more beam physics later today.



Tracking Performance: Beam Trips

FSD Trip Summary

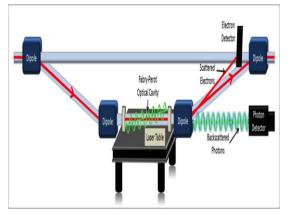
February 13 - March 25, 2015

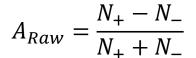
Max Trip Duration: 5 Minutes

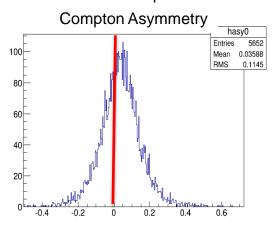
Max Types Per Trip: 10

CEBAF Reliability

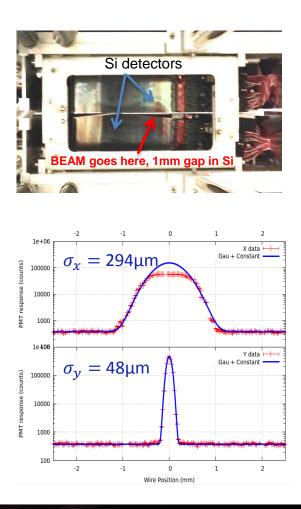
	Scheduled Weeks	Operated Weeks	Reliability Target	Reliability Achieved	
FY14	13	10.3	50	48	
FY15	18	19.7	58	68	Received additional funds for more operating weeks
FY16	16		66		
FY17	27		70		
FY18	27		74		
FY19	28		78		
FY20	28		82		
FY21	28		85		

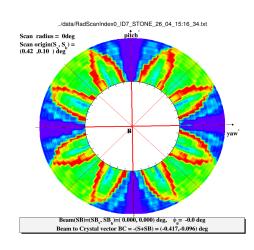

- Long term schedule is based on "Cost of Living" scenario.
- Additional funding will generally add more operating weeks and may also result in an increase to the reliability target.
- Reliability session this afternoon
- Metrics presentation on Friday

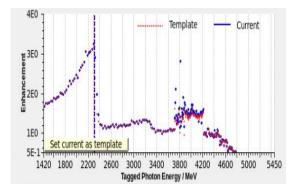




Three Hall Program: (E_{pass}= 1.0 GeV)


Hall-A: Commissioning e- polarimeters

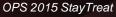




Hall-B: Ribbon beam for dark matter search

Hall-D: First coherent bremsstrahlung spectrum

Jefferson Lab



Summer 2015 Shutdown Tasks

Preparing for 12GeV Operations:

- Utilities Infrastructure Modernization upgrade
 - Power grid, cooling towers, communications
- Helium Processing
 - Energy Reach
- 750MHz Separator Cavities
 - Modifications to achieve design, enable RF separation at 11GeV.
- Cryogenic plant repair and maintenance
- Pathlength chicane upgrade
 - Restoring the range of the pathlength chicane to the 6GeV equivalent.
- Tunnel Air Conditioning
 - Control temperature rise in tunnel. Temperature should not rise above 35 C.
- Vacuum system hardening
 - Preparing for synchrotron radiation induced vacuum loads
- Operations StayTreat

Helium Processing

- Utilized during 6GeV era to improve maximum operating gradient of SRF cavities (to reach 6GeV).
- Insert small amount of gaseous He into the cavity.
- Process cavity with RF power, watch for the radiation signature to drop (field emitters extinguished).
- Cryo-cycle the cavity to remove the He.
- Determine the new maximum operating gradient

Representative gain (~4MV/m) on one C100 cavity recently Helium processed.

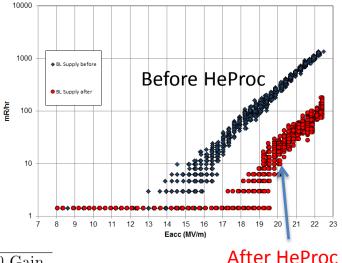
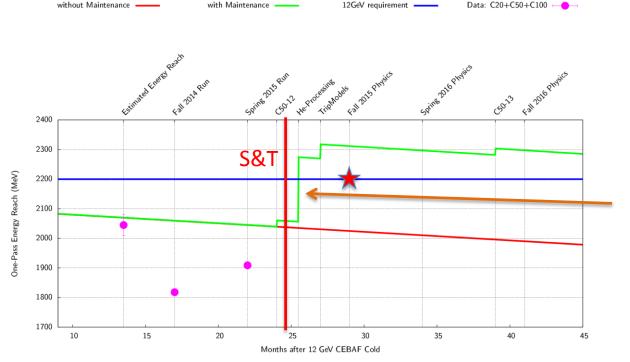
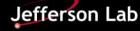

Application	C20 Gain	C50 Gain	C100 Gain
	(MV/m)	(MV/m)	(MV/m)
First	1.2	1.9	3.8
Second	0.9	1.4	2.9
Third	0.7	1.0	2.2

Table 12: Estimated gains from initial and subsequent applications of Helium processing on the three CEBAF cavity types. **Bold** values are derived from the references, plain text values are a best guess.




Energy Reach: Past and Future

Helium processing of all cavities planned for Summer 2015

- C20/C50 performance degradation:
 - 0.21 MV/m year (~34 MeV/pass year).
 - Cause of degradation is unknown, actively being investigated.
- C100 insufficient data to date to reliably estimate degradation, if any.
- Commissioning vs. Operations cavity performance:
 - $78\% < \frac{Operational\ Gradient}{Commissioning\ Gradient} < 94\%$

12GeV Operations: Future

- Complete the Summer 2015 shutdown tasks.
- Operate RF systems 24/7 for two weeks prior beam operations.
 - Optimize C100 LLRF to achieve design gradients (or beyond).
 - Collect data on C20 trip rates, used to optimize gradient distribution with minimal trip rate.
 - Decrease the gap between E_{maxOPS} and GMES for all cavity types.

Fall2015 (Epass = 2.2 GeV):

2015-Oct-26 to 2015-Dec-21

- Emittance/energy spread growth studies.
- SRF performance optimization at full energy.
 - Minimize trip rate
 - Minimize recovery time
 - Maximize gradient
- Detector commissioning at full energy.
- Opportunistic beams for Physics.

Spring2016 (Epass = 2.2 GeV):

2016-Jan-28 to 2016-Mar-31

 First Physics runs with CEBAF at 12 GeV energy: Halls A&D

Non-Beam Accomplishments

- Successfully completed the Accelerator Readiness Review process (several staged reviews) for 12GeV CEBAF.
- Commissioned the cryo plants and established 2K operations in North and South linacs.
- Established the CEBAF Element Database (CED) as the definitive source for CEBAF configuration.
 - CED used to drive many other new developments, Hot Check Out tool, control screen generation, beam matching tool, etc.
- Installed and checked every CEBAF element (over 8000) before beam transport.
 - Accelerator 12GeV KPP demonstrated
- Fully characterized (E_{max}, Q₀, Field Emission) every SRF cavity before the start of 12GeV operations.
 - Provides a baseline for gauging SRF performance in the future.

Beam Commissioning Accomplishments

- 2.2GeV/pass one-pass beam transport with greater than 50% availability.
 - Accelerator 12GeV Project KPP demonstrated
 - Evidence that the RF gradient is insufficient for Physics operations (high availability).
- Multi-pass capability established.
 - First use of small (kHz) change of the Master Oscillator to deal with large (2cm'ish) changes in CEBAF circumference.
- 5.5pass beam transported to the Hall-D dump.
 - Shielding issues identified and addressed.
 - CW beam successfully transported to Hall-D dump.
 - First photons generated and sent into Hall-D.
 - Hall-D detector 12GeV Project KPP demonstrated.

Beam Commissioning Accomplishments (cont.)

- Multi-user capability established.
- CW beam, up to 50μ A delivered to Hall-A (2-pass).
- Extraction system 499MHz and 750MHz commissioned.
 - New 750MHz cavity power limitation identified.
 - New 249.5MHz laser drive system issues identified.
- Physics quality beams delivered to Hall-A and Hall-B.
 - Hall-A DVCS exp. one Q² point measured.
 - Hall-B HPS exp. ~1/3 of the 1GeV data collected (additional runs at 2.2,4.4 and 6.6 GeV).

What We've Learned

- Gradient not quite enough for Physics operations
 - Helium Processing required to achieve design energy
 - C100 controls optimization/operations training -> increase C100 operational gradients.
- CEBAF Circumference can change significantly during long down periods.
 - Master Oscillator $\Delta\lambda$ crucial in dealing with large change.
 - Some diagnostics (a few special BPMs) not happy with large (10kHz) changes.
- Beam matching at the Arc entrance is a valid approach for CEBAF setup.
 - Non-zero M₅₆ in the upper arcs has presented some challenges.
 - Plan to revert back to M₅₆=0 (6GeV CEBAF Optics) for the Fall program.
- Four hall separation system, 750MHz cavities & 249.5MHz laser drive, not 11GeV capable.
 - New 249.5MHz drive system under design, in the meantime analog system in place.
 - 750MHz cavity power issues identified and being addressed.

Summary

Turbulent Spring 2015:

- Beam matching at entrance to each Arc demonstrated as a valid approach.
- 4-hall separation system commissioned.
- Cryogenics remains a single point of failure.

Plan for 12GeV Operations:

- Helium processing of all cavities will provide the gradient reach needed for 12GeV operations.
- Tunnel AC, Dogleg upgrade, 750MHz cavity, vacuum system hardening, etc. will ease some of the challenges of 12GeV operation.

Majority of the Summer 2015 shutdown work is in support of operating CEBAF at the 12GeV design energy this Fall, Spring 2016 and beyond.

Operations 3-day StayTreat

END?

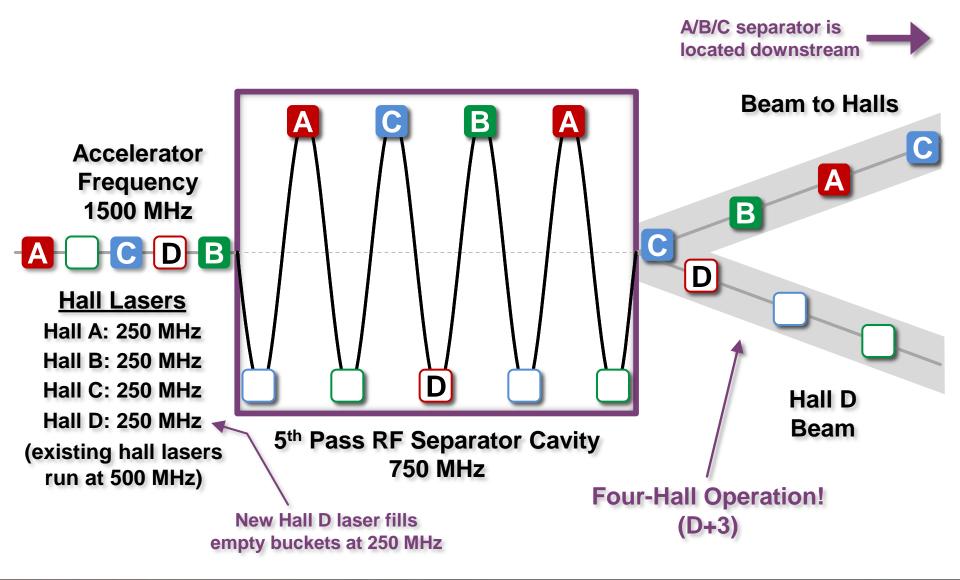
Thursday, July 16, 2015				Friday, July 17, 2015			
	OPS			OPS			
	Assemble: Coffee and Pastries pro	ovided		Assemble: Coffee and Pastries provided			
OPS and the Users				Tools and Software			
	Chair: Arne Freyberger			Chair: Matt Bickley			
8:30	Welcome and Meeting Goals	Arne Freyberger		8:30	CED status: new features and data maintenance	Theo Larrieu	
9:00	Hall-A User feedback	Thia Keppel		9:00	Lock configuration and mangement	Brian Bevins	
9:15	Hall-B User feedback	F-X Girod		9:20	FSD Fault Categorization	Ryan Slominski	
9:30	Hall-D User feedback	Hovanes Egiyan		9:40	Getting the most from your requests for help with software	Michele Joyce	
9:45	Hall-C Status and plans	Thia Keppel		10:00	Content of a good log entry	Ron Lauze	
10:00	OPS & the users	Mike McCaughan					
	Break: Cold coffee and stale pas	tries			Break: Cold coffee and stale	pastries	
	Beam Transport				Safety and Metrics		
	Chair: Mike Spata				Chair: Bill Merz		
10:30	Status of the injector process-driven setu	Alicia Hofler		10:30	PSS status and plans	Henry Robertson	
10:50	ORFP Status	Todd Satogata		10:50	OPS and PSS	Paul Vasilauskis	
11:15	Pathlength/MO Setup	Michael Tiefenback		11:10	Service Buildings, B&D rapid access plans	Vashek Vylet	
11:30	Extraction/Separator Setup	Mike Spata		11:30	DOE Metrics Reliability	Arne Freyberger	
11:45	Discussion	All					
	Lunch: On your own				Lunch: On your own		
	Reliability			Projects			
Chair: Steve Suhring				Chair: Ken Baggett			
13:30	RAR Summary	Randy Michaud		13:30	Dogleg upgrade	Andrew Kimber	
13:50	Bellows: RAR report summary	Brian Freeman		13:45	Hall-D feedback	Trent Allison	
14:05	Vacuum: 12GeV hardening	Anthony Dipette		14:00	High Power Dumps	Dipette/Michalski	
14:20	Harps: Reliability improvement plans	Omar Garza		14:20	Laser/Inj. Upgrades to support 4-hall ops	Joe Grames	
14:35	Downtime: Global analysis	Randy Michaud		14:40	AIP Plans	Arne Freyberger	
Bro	eak: Cookies, H2O, Ice Tea? Cold soda	? Warm soda?		Break: Cookies, H2O, Ice Tea? Cold soda? Warm soda?			
Beam Physics				Long Range Plans and Close Out			
Chair: Todd Satogata				Chair: Joe Grames			
15:30	Transverse Emittance	Todd Satogata		15:30	SRF Long Range PIT	Geoff Krafft	
15:50	Model Developments/Status	Yves Roblin		15:50	Partity Quality Beam Working group report	Riad Suleiman	
16:05	qsUtility / eDT Update	Dennis Turner		16:10	LERF Plans	Steve Benson	
16:20	Bunch Length Measurements and Plans	Mahmoud Ahmad		16:30	UITF Status and Plans	Matt Poelker	
16:40	Discussion	All	° 2	16:50	Wrap Up	Arne Freyberger	
	END				END2		


END

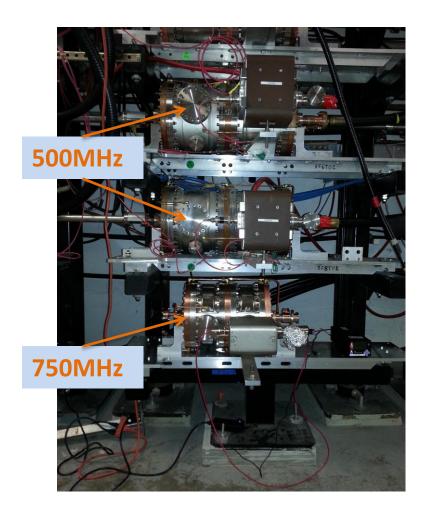
- Chairs please keep the speakers on schedule and the discussion focused.
- Speakers please respect the schedule.
- Audience please keep the discussion relevant, respectful, crisp and invigorating.
- Actions items will be distilled from the presentations and discussion. No need to solve the problem during the meeting.

Jefferson Lab

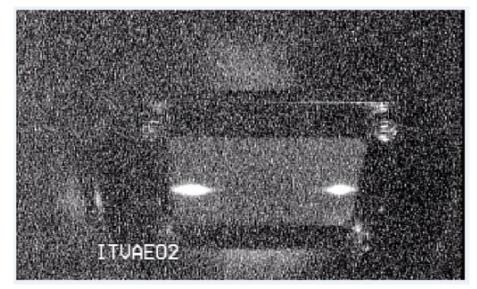
Back Ups


Accelerator Mission

- The Accelerator Mission is to advance the capability of Jefferson Lab to carry out world-class nuclear science and, more broadly, to develop Jefferson Lab's expertise in technologies associated with high-power superconducting linacs
- The goals to achieve the mission deliver results in four strategic areas:
 - Operate and upgrade the JLab accelerator facilities
 - Prepare for a Medium-Energy Electron Ion Collider (MEIC) at Jefferson Lab
 - Sustain Jefferson Lab's core accelerator competencies to support DOE Office of Science projects and other partnerships
 - Attract and educate the next generation of accelerator scientists and engineers
- Goals are in priority order



RF Separation – Four Halls

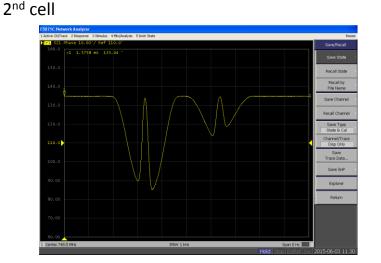


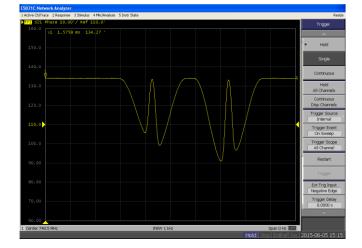
750MHz Separation

A & D beam separated on 5th pass at 9.6 GeV.

Commissioning effort identified improvements required to achieve full-energy separation

Design maximum beam energy is 11 GeV




750MHz Separators: Path toward 11GeV capability

- Increase power input by operating Inductive Output Tubes (IOT) at full power (done)
- Improve resonance controls (Prototype done, production systems in progress):
 - Warm Cu cavities, tuning controlled via temperature
 - Improve temperature control hardware (better valves, sensors) and software (feedback loops).
- Improve coupling into the cavity (Prototype done, modifications in progress):
 - Improve alignment
 - Improve field monitoring

Example of poor field flatness, poor coupling into

Example of improved field flatness and coupling into 2nd cell

Cryogenic Plants

SC1 CC4 Repair

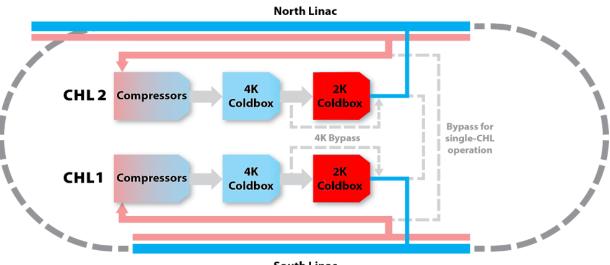
- SNS Spare CC shipped to JLab
- SNS Spare CC installation in SC1 on-going
- Expect SC1 ready for operation by end of August
- Still waiting for vendor quote on repair of damaged CC4

CHL2 Heat Exchanger

- CHL2 efficiency not meeting specifications
- New heat exchanger being installed by vendor
- Expect work to be completed by end of August.

Gradient Maintenance

Repeated Helium processing in the near term after this years processing will have limited return.


- **C50 program**: Refurbish the weakest original CEBAF cryomodules (C20).
 - Refurbished energy gain is ~50MeV, for a delta of about 20MeV (depends on C20 being refurbished).
 - Plan is to refurbish one C20 every year.
 - Energy gain of one refurbishment per year is insufficient to maintain constant energy reach.
- R&D on the source of the gradient loss:
 - Examine C20 modules at start of refurbishment process for sources of gradient degradation.
 - Examination of the most recent C20 undergoing refurbishment, while preliminary, encouraging.
 - Monitor, track and document installed SRF performance.
- C75 development:
 - Develop an alternative to the C50 refurbishment program that results in a cryomodule with 75MeV of energy gain.
 - Competitive, in terms of k\$/MV, if cost is less than \$3.5M (C50 refurbishment is about \$1.5M)

March 25th Power Event: Technical Stop

- Offsite power failure, CEBAF Site without power
 - ALL systems affected, including cryo plants
- Power restored in a couple of hours
 - 4K operations resumed immediately (Helium inventory management)
- Restoring 2K operations problematic:
 - CHL2->SC2->NorthLinac cannot achieve stable 2K operations due to contamination issues.
 - CHL1->SC1->SouthLinac cannot start due to issue with cold compressor 4 (CC4) in SC1.

12GeV cryogenic configuration

South Linac

Power Event Impact

CEBAF Down hard: 2015-03-25 – 2015-04-15

- Warm up SC2 to remove contaminants, purge/pump cycles.
- SC1 CC4 Failure
 - Compressor wheel stuck, will not rotate, seized, not good.
 - CC4 safe shutdown system found not working.
 - Compressor wheel had a hard landing at full speed (>30000 rpm).
- Reconfigure cryo-plants/CEBAF with both linacs connected to CHL2->SC2.
 CC4 disassembled in June:
 - Return to CEBAF Ops with one CHL plant
 - Limited cooling capacity
 - Limited beam energy
- Physics program continued with an alternative program at 1GeV/pass.

