ORFP Update: Outline

- Reminder of ORFP objectives
- Current ORFP status and comments
- Schedule and progress
- The future of ORFP
- Summary

ORFP Objectives

- Optics Restoration and Finalization Procedure
 - Multi-section procedure to correct and finalize steering and optics of CEBAF arcs, linacs, general transport to experiment end stations
- Includes
 - Orbit steering (to rels) and path length (ref to procedure)
 - X/Y coupling correction
 - Dispersion correction
 - M₅₆ correction
 - Betatron match correction
- Does not include
 - Injector setup, RF separation, lambertson/extraction steering, linac/LEM gradient/quads

Present Status

- Last update: Rev. 13; April 15, 2014
 - − Mostly C-S tuning knobs for 12 GeV $M_{56} \neq 0$ optics
 - Still owned by Spata for 12 GeV commissioning
- Update due by Aug 31 for Fall 2015 12 GeV operations
 - Tool evolution (e.g. CED CMPQ now in eDT)
 - 12 GeV optics impacts (e.g. path length, dispersion impact from $M_{56} \neq 0$ in higher pass arcs)
 - Checking/tuning $M_{56} \neq 0$ arcs (previously all $M_{56} = 0$)
 - Betatron matching philosophy
 - Old: 30 Hz Courant-Snyder / fopt, recombiner tuning knobs
 - New: qsUtility / harp corner matching, spreader matches
 - See qsUtility talk from Dennis Turner
 - E01 qsUtility matching demonstrated Winter 2015

Tool Evolution

- Full document being reviewed
 - Paths in JTabs being corrected where necessary
 - Tool transitions identified, modified
 - e.g. prohibited quad check now in eDT, not CMPQ
 - Injector, corner matching with qsUtility, not MultiHarp
 - M₅₆ tool now encompassed within GenericKnobs
 - Pathlength tools (e.g. MOMOD)
 - 4. Check the Injector-to-North Linac match by inserting viewers ITV0L10, ITV0R05, ITV1L02, ITV1L06, and ITV1L10. Are all of the beam spots round (with an aspect ratio no greater than 2:1)?

Present ORFP

- **YES NO+ A.**Open the Emittance Measurement screen (JTabs \Rightarrow Harp \Rightarrow Multi-HarpGo toEmittance) and select the Injector tab.
 - **B.** Insert the 0R08 insertable beam dump.
 - **C.** Restore Tune-Mode beam current of $15 \mu A$ (required to produce clean harp traces in the following steps).
 - **D.** Turn OFF the injector energy and orbit locks.
 - **E.** Click on the **Scan Harps** button and wait for the data collection to be complete (scanning the harps takes several minutes).

Ops StayTreat: ORFP (T. Satogata)

p. 4

M56 Effects on Dispersion

- M₅₆ ≠ 0 could produce ORFP problems by shifting pathlength during dispersion measurements
 - In extremes could even zero or flip "measured" dispersions
 - No obvious strategy but to revert to $M_{56} = 0$ for Fall 2015
 - Model-based design targets (see later slide) may help

M₅₆ Correction

- Previously all arc M₅₆ design values were zero
 - ORFP procedure is to null pathlength response to energy offsets
 - Good enough for Fall 2015 run but be prepared for $M_{56} \neq 0$
- Change procedure to adjust M₅₆ to (documented) design non-zero value for given lattice
 - Get design arc M_{56} from CED? Model? (Similar to injector chicane M_{56} documentation quandary)
 - Requires calibrated pathlength vs dp/p for M₅₆ adjustment
- M₅₆ adjustment with isolated dispersive quads in an arc interferes with upstream E01 betatron match
 - Adoption of E01 betatron matching as primary scheme requires adjustment of M₅₆ quadrupole knobs

Betatron Match

- Many changes!
 - Recommendation: put both match methods in ORFP
 - Add sections for E01 qsUtility zigzag match
 - Model after existing injector match ATLis: <u>a15111</u>, <u>e3332778</u>
 - Have mature qsUtility, all templates in place
 - Preferred approach: quantitatively reproducible (and reliable?)
 - Add conditions for use of C-S instead of qsUtility match
 - Missing or malfunctioning E01 harp, qsUtility match failure
 - Significant C-S mismatch growth in arc/spreader
 - Ensure that all C-S tuning quads are consistent with design optics
 - Must this be a manual process?

Ops StayTreat: ORFP (T. Satogata)

Document Organization: Tuning Quads

- Tables of tuning quads are distributed through document in relevant sections
 - Gather all tables at end of document for convenient reference
- Mike McCaughan has updated (and will continue to update) CED so knobs are properly color coded in eDT and screens
 - Matching quads must be consistent with qsUtility templates

Name	Usage	Name	Usage
MQB1S01	V.Dispersion	 MQB1A11	H.Disp/M5,6
MQN1S04	Matching	MQB1A21	H.Disp/M5,6
MQL1S05	Matching	MQL1R02	V.Beta
MQB1S06	Matching	MQL1R03	H.Beta
MQL1S08	Matching	MQL1R04	V.Beta
MQL1S09	Matching	MQL1R06	H.Beta
MQB1S10	Matching	MQB1R10	V.Dispersion

Schedule and Progress

- Have started revision feedback process with Tom Oren in past few weeks
 - Incorporating additional input from Mike McCaughan
- Jul 28: Present detailed revision list to Bteam, circulate
 Itemize changes and implementations
- Aug 4: Start implementing changes
 - Iteration among core technical group
 - Incorporate existing procedures, e.g. E01 zigzag matching
- Aug 24: Finalized document available to all for comments
- Aug 31: Document finalized, ready for ops training

The Future of ORFP

- The following three slides are longer-term future ideas for ORFP
 - Orthogonal C-S Knobs
 - Model-Based Design Targets
 - RayTrace
- None of them will be implemented for 2015-2016 operations
 - But they are worth discussion about prioritization, and possible development/testing during beam studies
 - They are ordered roughly by my estimate of required effort

Future: Orthogonal C-S Knobs?

- Betatron knobs are pairs of recombiner quads that are "mostly orthogonal"
- Operators iterate between quads, planes to match C-S
- Data is available in orbits, quad strengths, and model to:
 - Dynamically generate four orthogonal knobs from four C-S quads and difference orbits
 - Orthogonality generation will also fail if C-S orbits are degenerate, producing a procedural C-S orbit degeneracy test
 - Not a high priority, but a nice project for an operator or undergraduate student
 - Would make C-S betatron match fast or even automatable
 - Recommendation: present computational study at future BTeam

Future: Model-Based Design Targets?

- There are many places in ORFP that could benefit from availability of model-based design values to operations
- Examples that work well:
 - Steering rels (though not strictly model-based)
 - qsUtility design match parabolas (though not modified to include intermediate quad changes from design)
- Other opportunities for improvement:
 - Harp, SLM, and viewer expected beam aspect ratios
 - Presently calculated by hand from CED, inserted in procedure
 - Dispersion values in arcs, injector chicane (not just positive/negative values)
 - Are BPM differential positions calibrated well enough?

Future: RayTrace?

- In the future RayTrace ideally can...
 - Localize errors more precisely than other ORFP techniques
 - Provide robust, fast, large-scale transport matching
 - Note: It does not obviate need for beam/transport match
- Would benefit from substantial tool development
 - Similar to evolution of quad scan emittance/matching

Ops StayTreat: ORFP (T. Satogata)

Jefferson Lab

Summary

- ORFP is being revised for late 2015 12 GeV run
- Revisions address broad range of needed updates
 - Tool and path details
 - Consistency with 12 GeV design lattice (profiles, M₅₆)
 - Betatron matches: E01 harp scans, C-S tuning knobs
 - Document organization: tuning knob lists
- Full reviewed revision to be available by Aug 31
- Ideas presented for future developments to support ORFP
 - Orthogonal C-S Knobs
 - Model-based design targets on tuning screens
 - RayTrace transport measurement and correction

