Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering

A. Camsonne, M. Jones, M. Paolone, N. Sparveris (contact)

H. Atac, A. Blomberg, S. Joosten, Z.E. Meziani, M. Paolone (spokesperson), N. Sparveris (spokesperson / contact person) *Temple University, Philadelphia, PA, USA*

A. Camsonne (spokesperson), J.P. Chen, M. Jones (spokesperson) Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

T. Badman, S. Li, E. Long, K. McCarty, C. Meditz, M. O'Meara, R. Paremuzyan, S. Santiesteban, P. Solvignon-Slifer, K. Slifer, B. Yale, R. Zielinski University of New Hampshire, Durham NH, 03824

> K. Allada, A. Bernstein, S. Gilad Massachusetts Institute of Technology, Cambridge, MA, USA

E. Cline, R. Gilman, A. Tadepalli Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

> Z. Zhao Duke University, Durham, NC, USA

X. Bai, D. Di, K. Gnanvo, C. Gu, N. Liyanage, H. Nguyen University of Virginia, Charlottesville, VA, US

B. Dongwi, N. Kalantarians, M. Kohl, A. Liyanage, J. Nazeer, A. Nuruzzaman Hampton University, Hampton, Virginia 23668, USA

S. Bae, S. Choi, J. Ha Seoul National University, Department of Physics & Astronomy, Seoul 151-747 Korea

> P. Markowitz Florida International University, Miami, Florida 33199, USA

J. Beričič, T. Brecelj, S. Širca, S. Štajner Jožef Stefan Institute and Faculty of Mathematics and Physics, University of Ljubljana, Slovenia A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan, S. Zhamkochyan I. A. Alikhanian National Science Laboratory (Yerevan Physics Institute), Yerevan, Armenia

> V. Punjabi Norfolk State University, Norfolk VA 23504

C. F. Perdrisat The College of William and Mary, Williamsburg VA

> A.T. Katramatou, G.G. Petratos Kent State University, Kent, OH 44242

D. Androic University of Zagreb, Physics Department, Bijenicka 32, HR-10000 Zagreb

M. Elsaar Southern University at New Orleans, New Orleans, LA 70126

B. Pasquini Dipartimento di Fisica, Universita' degli Studi di Pavia, and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy

> G. Huber University of Regina, Regina, SK S4S0A2, Canada

W. Armstrong Argonne National Laboratory, Argonne, IL

H. Fonvieille Clermont Université, UBP, CNRS-IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand, France

> C.E. Hyde Department of Physics, Old Dominion University, Norfolk VA 23529

Scalar Polarizablities

Fundamental structure constants (such as mass, size, shape, ...)

Response of internal structure & dynamics to external EM field

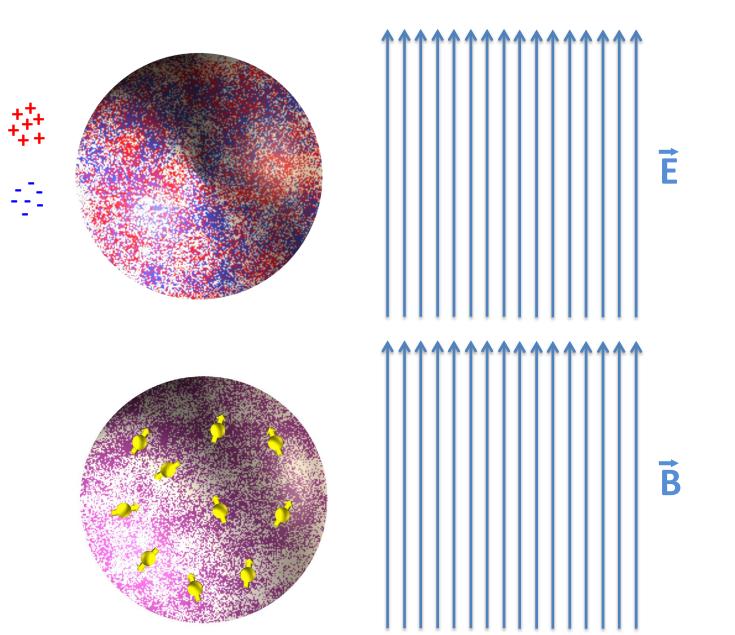
Sensitive to the full excitation spectrum of the nucleon (contrary to the elastic FFs)

Accessed experimentally through Compton Scattering processes

Virtual Compton Scattering:

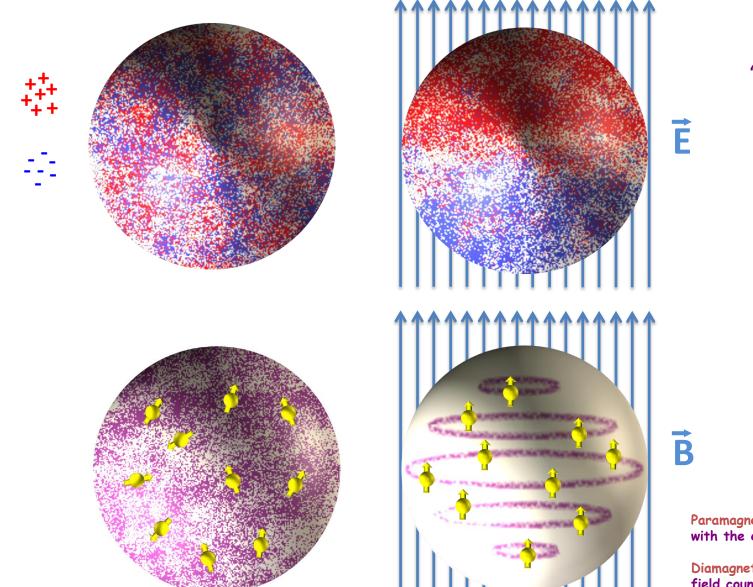
Virtuality of photon gives access to the Generalized Polarizabilities $\alpha_E(Q^2) \& \beta_M(Q^2)$

 mapping out the spatial distribution of the polarization densities


Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

PDG

150 Baryon Summary Table **N** BARYONS (S = 0, I = 1/2) $p, N^+ = uud; n, N^0 = udd$ р $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.00727646681 \pm 0.0000000009$ u Mass $m = 938.272046 \pm 0.000021$ MeV ^[a] $|m_p - m_{\overline{p}}|/m_p < 7 \times 10^{-10}$, CL = 90% [b] $\left|\frac{q_{\bar{p}}}{m_{\pi}}\right|/(\frac{q_{\bar{p}}}{m_{\pi}}) = 0.9999999991 \pm 0.0000000009$ $|q_p + q_{\overline{p}}|/e < 7 \times 10^{-10}, \text{ CL} = 90\% \ ^{[b]}$ $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.792847356 \pm 0.00000023 \,\mu_N$ $(\mu_p + \mu_{\overline{p}}) / \mu_p = (0 \pm 5) \times 10^{-6}$ Electric dipole moment $d < 0.54 \times 10^{-23} e \text{ cm}$ Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm [d]Charge radius, e_p CODATA value = 0.8775 \pm 0.0051 fm [d]Magnetic radius = 0.777 ± 0.016 fm Mean life $\tau > 2.1 \times 10^{29}$ years, CL = 90% [e] ($p \rightarrow$ invisible mode) Mean life $\tau > 10^{31}$ to 10^{33} years ^[e] (mode dependent)


Scalar Polarizablities

Response of internal structure to an applied EM field

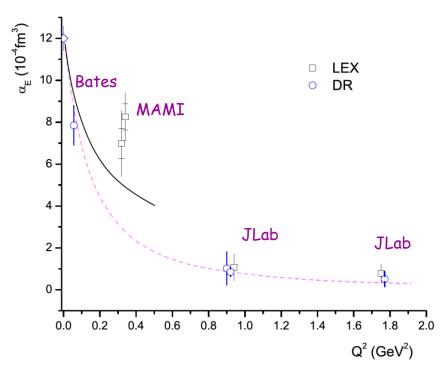
Scalar Polarizablities

Response of internal structure to an applied EM field

"stretchability"

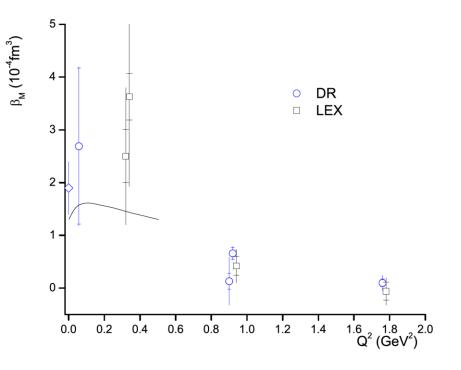
$$\vec{d}_{E \text{ induced}} \sim \vec{\alpha} \vec{E}$$

External field deforms the charge distribution


"alignability" $\vec{d}_{M \text{ induced}} \sim \beta \vec{B}$

β_{para} > 0 β_{diam} < 0

Paramagnetic: proton spin aligns with the external magnetic field


Diamagnetic: π -cloud induction produces field counter to the external one

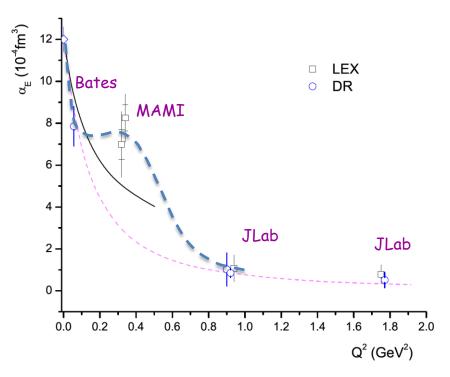
Experimental Landscape

 $a_E \approx 10^{-3} V_N$ (stiffness / relativistic character) Data suggest non-trivial Q² evolution of a_E Current theoretical calculations not able to describe the enhancement at low Q² Q² = 0.33 (GeV/c)² measured twice at MAMI:

- Phys. Rev. Lett 85, 708 (2000)
- Eur. Phys. J. A37, 1-8 (2008)

 β_M small $\leftarrow \rightarrow$ cancellation of competing mechanisms Large uncertainties

Higher precision measurements needed


 Quantify the balance between diamagnetism and paramagnetism

Current situation unsatisfactory:

- more measurements needed (vs Q^2)

- Higher precision measurments needed

Experimental Landscape

 $a_E \approx 10^{-3} V_N$ (stiffness / relativistic character) Data suggest non-trivial Q² evolution of a_E Current theoretical calculations not able to describe the enhancement at low Q² Q² = 0.33 (GeV/c)² measured twice at MAMI:

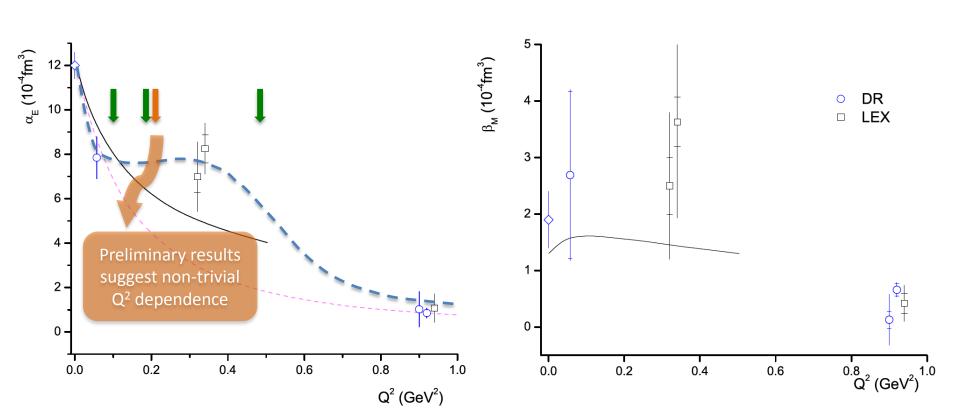
- Phys. Rev. Lett 85, 708 (2000)
- Eur. Phys. J. A37, 1-8 (2008)

 β_M small $\leftarrow \rightarrow$ cancellation of competing mechanisms Large uncertainties

Higher precision measurements needed

 Quantify the balance between diamagnetism and paramagnetism

Current situation unsatisfactory:

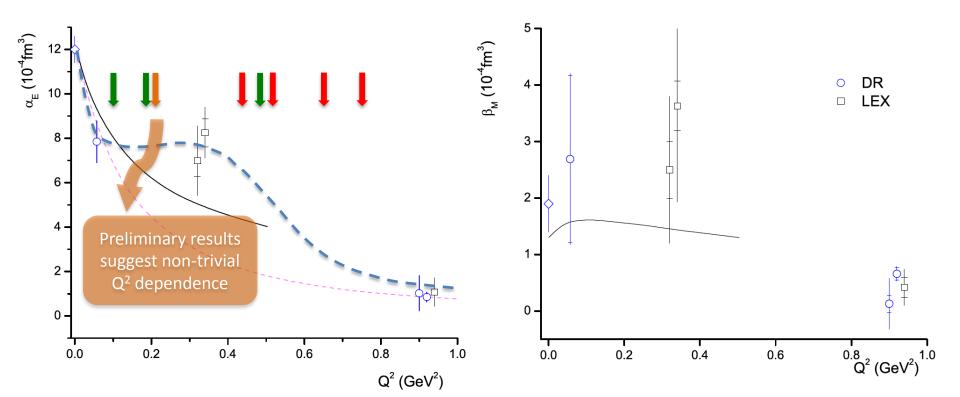

- more measurements needed (vs Q^2)

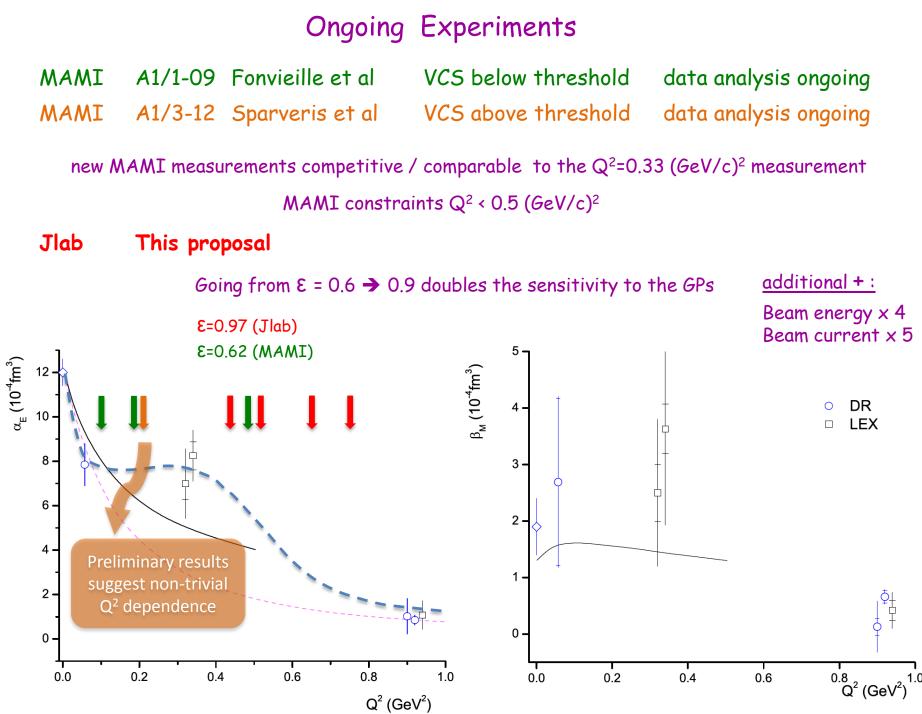
- Higher precision measurments needed

Ongoing Experiments

MAMIA1/1-09Fonvieille et alVCS below thresholddata analysis ongoingMAMIA1/3-12Sparveris et alVCS above thresholddata analysis ongoing

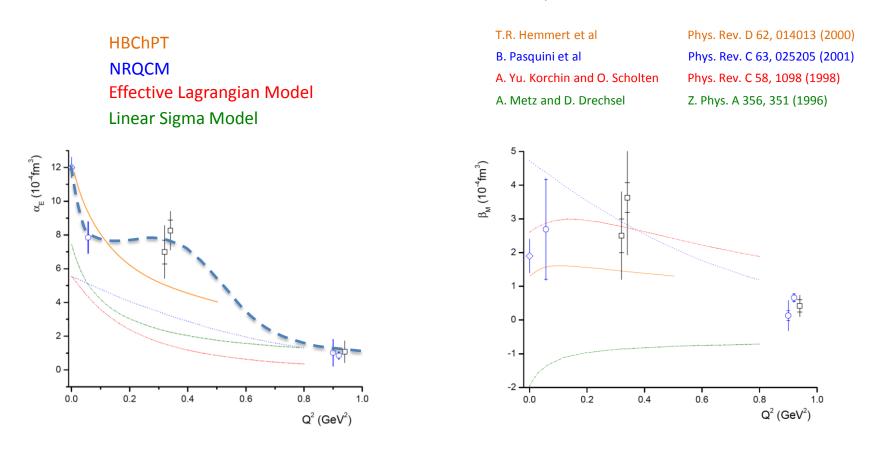
new MAMI measurements competitive / comparable to the Q²=0.33 (GeV/c)² measurement MAMI constraints Q² < 0.5 (GeV/c)²




Ongoing Experiments

MAMIA1/1-09Fonvieille et alVCS below thresholddata analysis ongoingMAMIA1/3-12Sparveris et alVCS above thresholddata analysis ongoing

new MAMI measurements competitive / comparable to the Q²=0.33 (GeV/c)² measurement MAMI constraints Q² < 0.5 (GeV/c)²


Jlab This proposal

 Q^2 (GeV²)

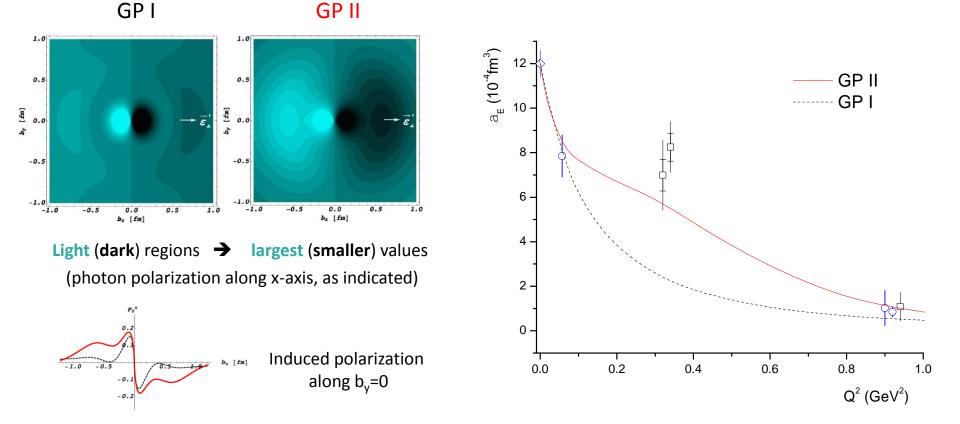
Theoretical Landscape

All theoretical calculations predict a smooth fall off for α_E None of the models can account for the non trivial structure of α_F suggested by the data

Currently: Near Future: $Q^2=0$ calculations exist but at unphysical quark masses calculations at the physical point for $Q^2=0$ first calculations for $Q^2\neq 0$

Spatial dependence of induced polarizations in an external EM field

Nucleon form factor data → light-front quark charge densities


Formalism extended to the deformation of these quark densities when applying an extenal e.m. field:

GPs → spatial deformation of charge & magnetization densities under an applied e.m. field

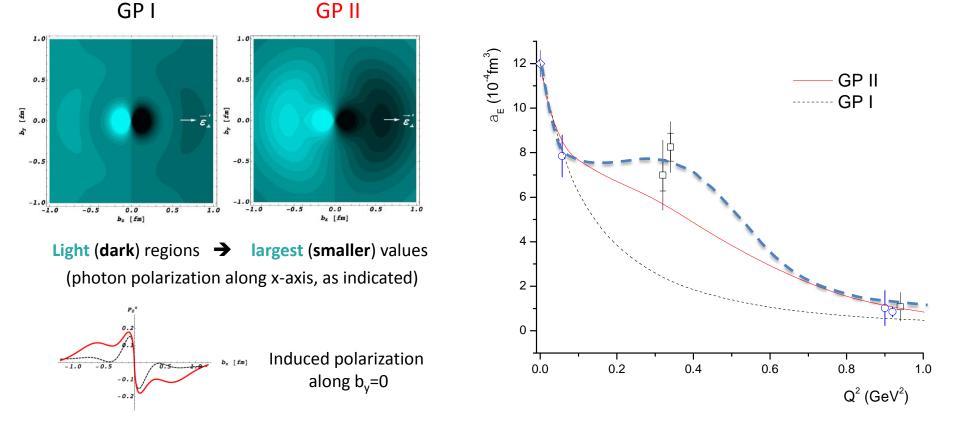
Induced polarization in a proton when submitted to an e.m. field

Phys. Rev. Lett. 104, 112001 (2010)

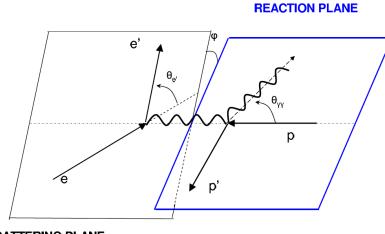
M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen

Spatial dependence of induced polarizations in an external EM field

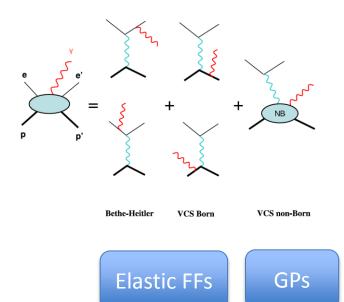
Nucleon form factor data → light-front quark charge densities

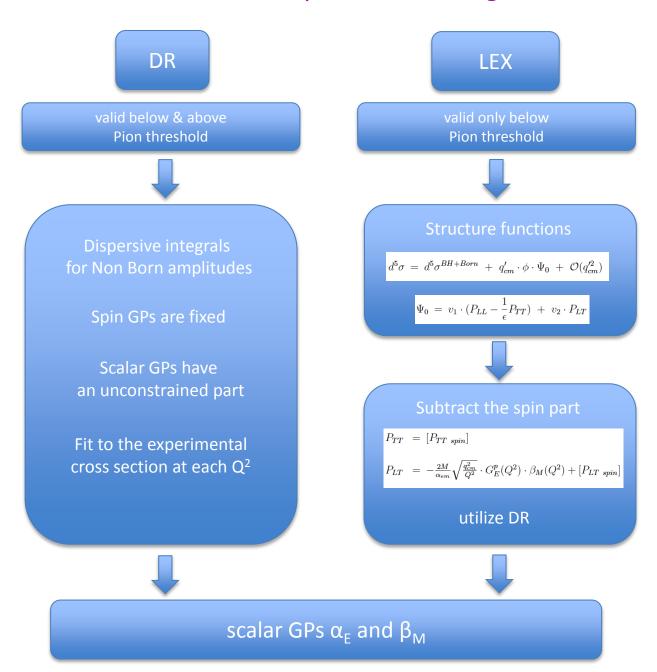

Formalism extended to the deformation of these quark densities when applying an extenal e.m. field:

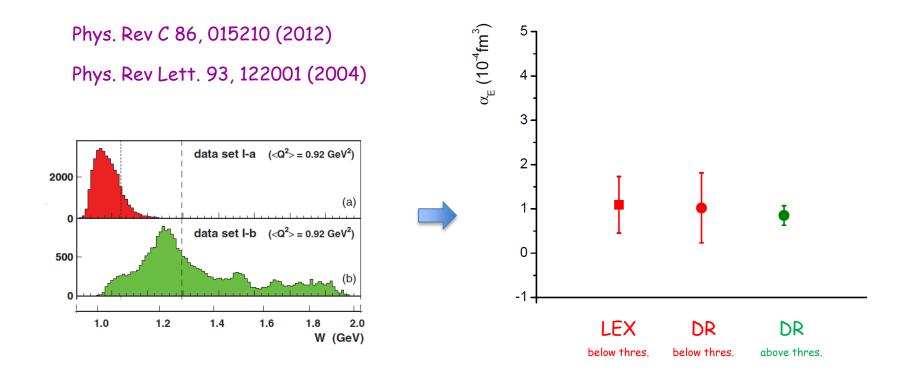
GPs → spatial deformation of charge & magnetization densities under an applied e.m. field


Induced polarization in a proton when submitted to an e.m. field

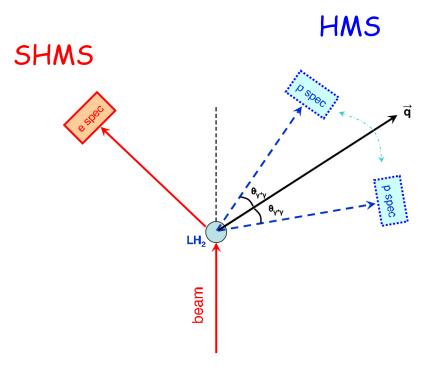
Phys. Rev. Lett. 104, 112001 (2010)


M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen

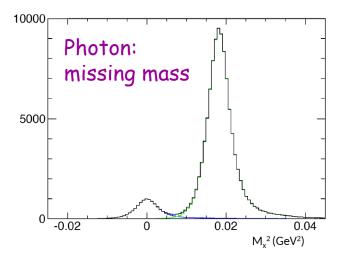

Virtual Compton Scattering


SCATTERING PLANE

Virtual Compton Scattering



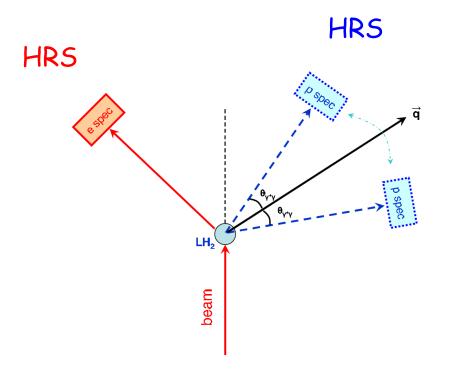
Virtual Compton Scattering


Sensitivity to the GPs grows with the photon energy

Experimental Setup

Hall C: SHMS, HMS 4.4 GeV 45-85 µA Liquid hydrogen 15 cm

e & p detection in coincidence


cross sections

in-plane azimuthal asymmetries

$$A_{(\phi_{\gamma^*\gamma}=0,\pi)} = \frac{\sigma_{\phi_{\gamma^*\gamma}=0} - \sigma_{\phi_{\gamma^*\gamma}=180}}{\sigma_{\phi_{\gamma^*\gamma}=0} + \sigma_{\phi_{\gamma^*\gamma}=180}}$$

sensitivity to GPs suppression of systematic asymmetries

Experimental Setup

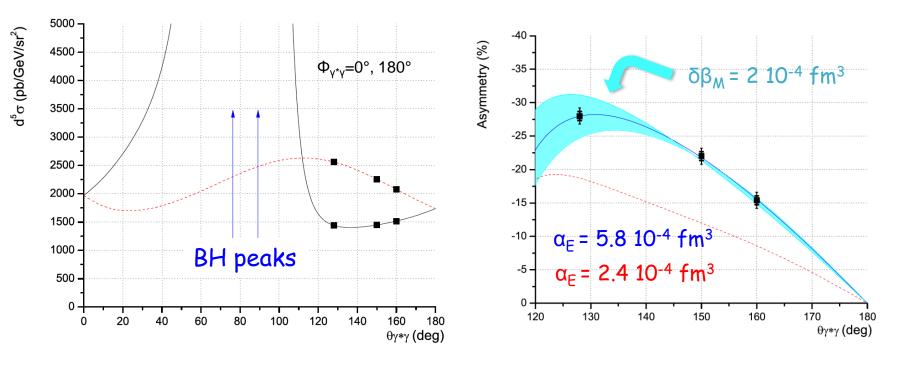
Hall A: HRS(e), HRS(p) 3.3 GeV 3.5 days 4.4 GeV 10.5 days Hall A (?)

HRS min. angle = 12.5 deg

Can not run Part I with 4.4 GeV

Run Part I with a lower beam energy

Part I with 3.3 GeV:


- Reduced sensitivity to GPs
- Smaller cross section
- \rightarrow $\delta \alpha_{\rm E}$ increased by 16.5%

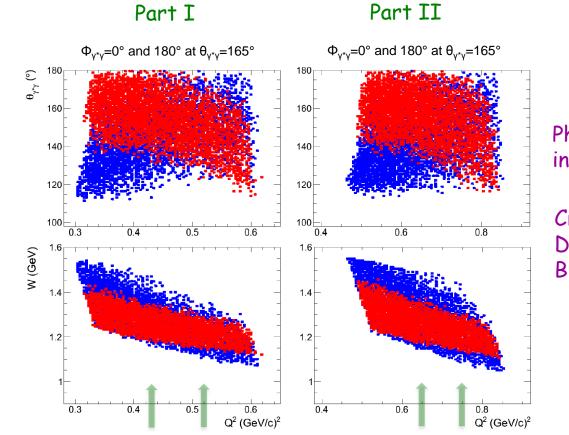
(still very competitive measurement)

Will not be able to allow for the maximum beam energy to another Hall during Part I (3.5 days)

The high Q^2 Jlab measurements (E93-050) were done in Hall A with the two HRSs, a 15 cm LH2 target, and a 4 GeV beam

 $Q^2 = 0.43 (GeV/c)^2$

avoid BH peaks stay at $\theta_{\gamma^*\gamma}$ >120°

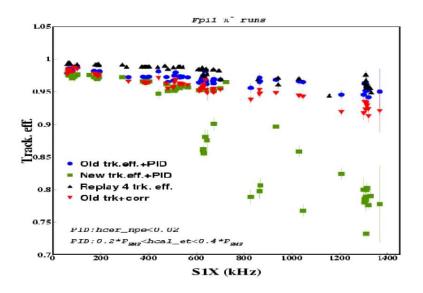

	Kinematical	$\theta_{\gamma^*\gamma}^{\circ}$	θ_e°	$P'_e(MeV/c)$	θ_p°	$P_p'(MeV/c)$	S/N	beam time
	Setting					•		(days)
	Kin Ia	165	9.39	3820.5	40.85	1010.40	1.3	0.5
	Kin Ib	165	9.39	3820.5	48.45	1010.40	2.4	0.5
Part I	Kin IIa	155	9.39	3820.5	38.34	995.20	1	0.5
	Kin IIb	155	9.39	3820.5	50.96	995.20	3.2	0.5
	Kin IIIa	128	9.39	3820.5	31.84	919.43	0.7	0.95
	Kin IIIb	128	9.39	3820.5	57.46	919.43	7.8	0.55
	Kin IVa	165	11.54	3708.6	40.81	1175.25	2.6	1.5
	$\operatorname{Kin}\mathrm{IVb}$	165	11.54	3708.6	47.35	1175.25	5	2
Part II	Kin Va	160	11.54	3708.6	39.73	1167.72	2.2	1.5
	$\operatorname{Kin}\operatorname{Vb}$	160	11.54	3708.6	48.43	1167.72	6.3	2
	Kin VIa	140	11.54	3708.6	35.52	1117.38	1.2	1.5
	Kin VIb	140	11.54	3708.6	52.64	1117.38	8	2

Part II 10.5 days

SHMS keeps same position & momentum through out Part I (Part II)

Part	I	Ι	II	II
Q²	0.43 (GeV/c) ²	0.52 (GeV/c) ²	0.65 (GeV/c) ²	0.75 (GeV/c)²

Phase space binned in Q², W, $\theta_{\gamma*\gamma}$, $\Phi_{\gamma*\gamma}$


Cross section: DR calculation, B. Pasquini

Part	I	I	II	II
Q ²	0.43 (GeV/c) ²	0.52 (GeV/c) ²	0.65 (GeV/c) ²	0.75 (GeV/c) ²

HMS singles rates

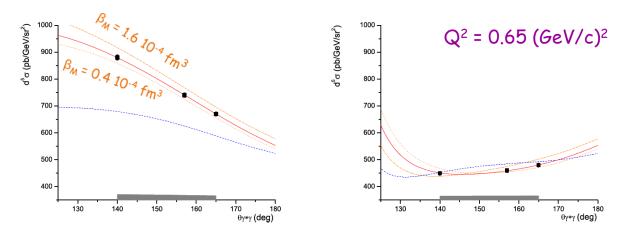
HMS Tracking Efficiency

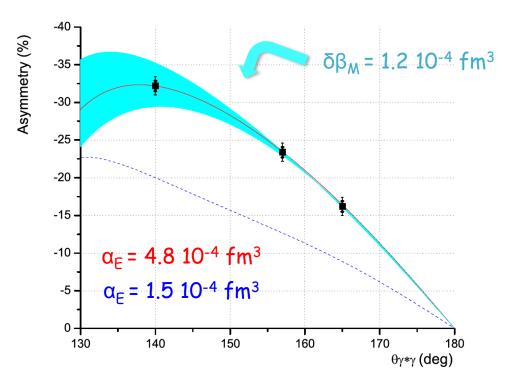
	Kinematical	HMS singles rates
	Setting	(kHz)
	Kin Ia	213
	Kin Ib	91
Part I	Kin IIa	290
	Kin IIb	68
	Kin IIIa	300
	Kin IIIb	34
	Kin IVa	102
	Kin IVb	37
Part II	Kin Va	122
	Kin Vb	31
	Kin VIa	244
	$\operatorname{Kin} \operatorname{VIb}$	16

HMS singles rates kept below 300 kHz

Kin IIIa 45 µA → All other settings \rightarrow 85 μA

Plus for systematics:

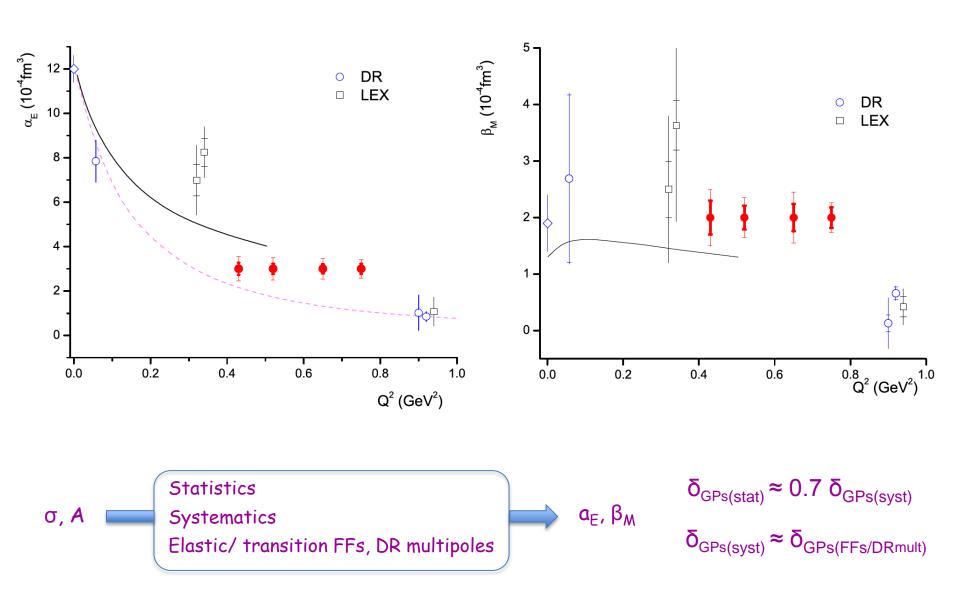

- Electron momentum & angle stays fixed through out Part I
- Electron momentum & angle stays fixed through out Part II
- Proton momentum stays fixed for the asymmetry pair ($\Phi_{\gamma^*\gamma}=0^\circ,180^\circ$) measurements
- No beam energy changes


One day for normalization studies / system check out

Time could be shared if running with group of other experiments

 $p(e,e'p)\pi^{\circ}$ measured for free

- High statistics
- Cross section very well known in this region
- Additional normalization per setting



Statistical	< ±1.3%
Beam energy / scat. Angle	±1-2.5%
Target density	±0.5%
Detector efficiency	±0.5%
Acceptance	±0.5%
Target cell backgr.	±0.5%
Target length	±0.3%
Beam charge	±0.3%
Dead time	±0.3%
Pion contamination in MM	±0.3%
Rad. Corr.	±1.5%
Other	±0.5%

σ	< ±1.3% (stat)	< ±3.3% (syst)
Α	≈ ±0.7% (stat)	≈ ±1.1% (syst)

Projected Results

Beam time request

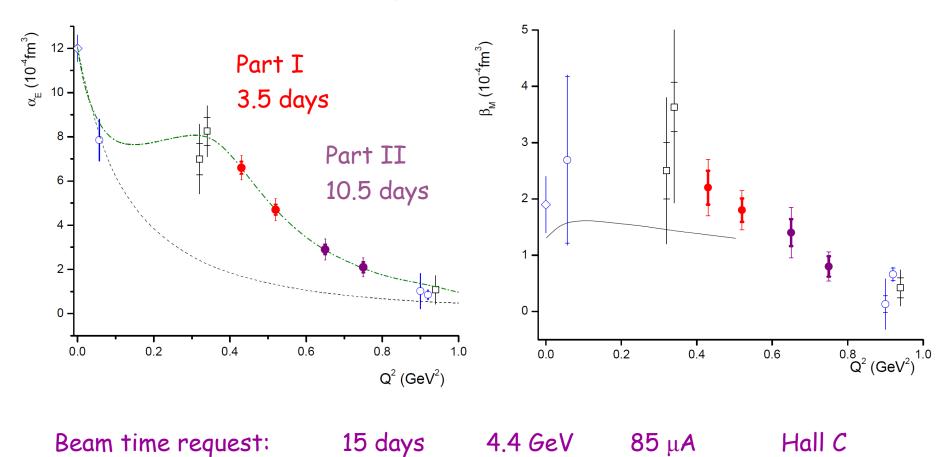
5 $\alpha_{\rm E}~(10^{-4} {\rm fm}^3)$ $\beta_{M} (10^{^{-4}} \text{fm}^{^{3}})$ 12 4 10 8 3 -亡 6 2 -4 1 2 0 -0 0.2 0.4 0.6 0.2 0.0 0.4 0.6 0.8 ^{0.8} Q² (GeV²)^{1.0} 0.0 1.0 $Q^2 (GeV^2)$

measurements arbitrarily projected

Beam time request:

15 days

4.4 GeV


Hall C

85 μ**Α**

Could also run in Hall A with the HRS's and two different beam energies (3.3 GeV and 4.4 GeV)

Beam time request

measurements arbitrarily projected

Could also run in Hall A with the HRS's and two different beam energies (3.3 GeV and 4.4 GeV)

Summary

High precision measurements of the electric and magnetic GPs

- fundamental structure constants
- internal structure and dynamics of the nucleon
- complementary to elastic & transition FFs, GPDs, TMDs, ...

New measurements in a region very sensitive to the nucleon dynamics

- will improve the precision of a_E and β_M by a factor of 2
- \bullet map vs Q 2 bridge low Q 2 measurements cross check measurements of other labs
- explore non trivial Q^2 dependence of a_E (mesonic cloud, something else ... ?)
- \bullet quantify the balance between paramagnetism and diamagnetism through β_M
- will provide with high precision the spatial deformation of charge & magnetization densities under an applied e.m. field (currently a profound structure is suggested in the region 0.5 fm - 1 fm)
- Lattice QCD results will be emerging in the next few years very important to cross check these calculations
- the new measurements are expected to trigger more theoretical activity

Beam time request:

- 15 days with 4.4 GeV in Hall C (standard setup)
- + 3.5 days (Part I) advances greatly our current knowledge of $a_E,\,\beta_M$
- possible also in Hall A

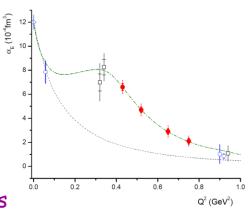
Thank you!

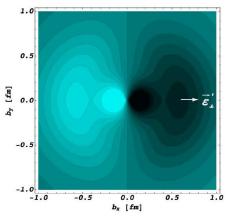
Summary

High precision measurements of the electric and magnetic GPs

- fundamental structure constants
- internal structure and dynamics of the nucleon
- complementary to elastic & transition FFs, GPDs, TMDs, ...

New measurements in a region very sensitive to the nucleon dynamics


- will improve the precision of a_E and β_M by a factor of 2
- \bullet map vs Q 2 bridge low Q 2 measurements cross check measurements of other labs
- explore non trivial Q^2 dependence of a_E (mesonic cloud, something else ... ?)
- \bullet quantify the balance between paramagnetism and diamagnetism through β_M
- will provide with high precision the spatial deformation of charge & magnetization densities under an applied e.m. field (a profound structure is suggested in the region 0.5 fm - 1 fm)



• measurements are expected to trigger more theoretical activity

Beam time request:

- 15 days with 4.4 GeV in Hall C (standard setup)
- + 3.5 days (Part I) advances greatly our current knowledge of $a_E,\,\beta_M$
- possible also in Hall A

