Exclusive ϕ Electroproduction with CLAS12 PR12-12-007

F.-X. Girod

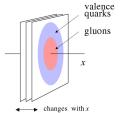
for the CLAS collaboration

June 18th 2012

Measuring the gluonic radius of the nucleon accross the valence region in the kinematics $Q^2=1\cdots 10~\text{GeV}^2$ and $t_{\min}-t=0\cdots 4~\text{GeV}^2$

Collaboration



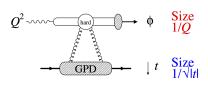

and the CLAS collaboration

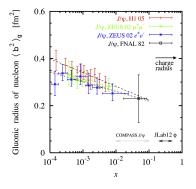
Co-spokespersons : F.-X. Girod, M. Guidal, A. Kubarovsky, V. Kubarovsky, P. Stoler, C. Weiss

Gluons at large *x*

• Large glue density at x > 0.1

PDF from global fits (F_2 evolution, ν_{DIS} , jets)


Gluons carry more than 30% of the momentum for 0.1 < x


• 3D imaging of the nucleon

spatial distribution of valence quarks : elastic scattering, DVCS, . . .

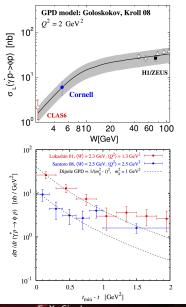
Nucleon gluonic radius ? exclusive ϕ

Nucleon gluonic radius at 11 GeV

• Exclusive ϕ electroproduction as the best probe of gluon GPD at 11 GeV

> Dominance of small-size configurations at $Q^2 \sim \text{few GeV}^2$

GPD = Universal gluon form factor


Gluonic radius as a function of x

Small x: radius grows through parton diffusion

x < 0.01 measured: J/ψ and ϕ at HERA H1/ZEUS and Fermilab

x > 0.1 unknown range : ϕ with CLAS12

GPD description of ϕ production

Goloskokov-Kroll 2008 model

includes finite size of $q\bar{q}$ pairs (Sudakov suppression)

Describes well available cross-section data

 Gluonic radius at 4 and 6 GeV from CLAS data consistent with extrapolation from higher energy

dipole mass $m_g^2 \sim 1 \; \text{GeV}^2$

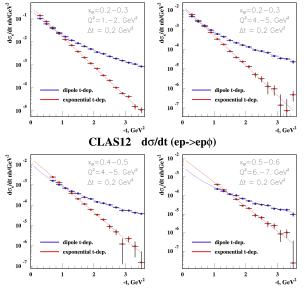
CLAS12 Exclusive ϕ electroproduction

Analysis of the cross-section in two steps :

 Test the approach to small-size regime, through model-independent features

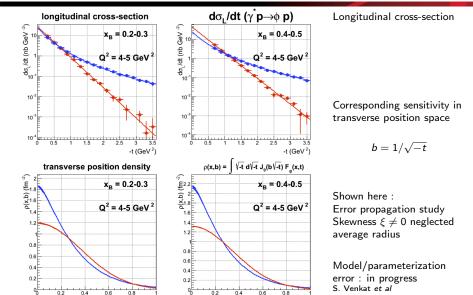
When do t-slopes become independent of Q^2 ? How does W-dependence change with Q^2 ? L/T ratio and s-channel helicity conservation

 Extract the gluonic radius accross the valence region from the relative t-dependence of the differential cross-section


> Average gluonic radius : model independent Change with x : use GPD models (e.g. Double-Distribution)

$$\frac{\frac{d\sigma}{dt}(t)}{\frac{d\sigma}{dt}(t=0)} \propto \frac{\langle \mathit{HS}(t) \rangle^2}{\langle \mathit{HS}(t=0) \rangle^2} + \mathit{E^S} \; \text{contribution}$$

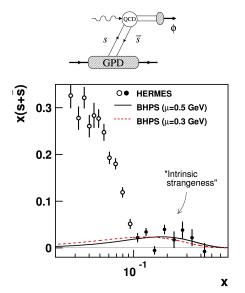
$$\downarrow \langle \mathit{b^S} \rangle^2$$


Step 1: Test of model-independent features

Unseparated cross-sections with exponential and dipole models

Precision measurement of t-slopes at fixed x_B

Step 2: Extraction of gluonic profiles



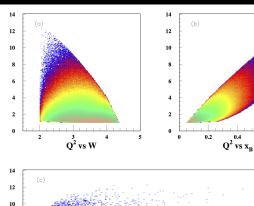
b (fm)

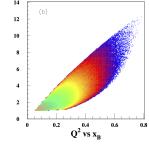
b (fm)

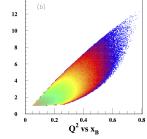
Phys.Rev. C83 (2011) 015203

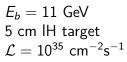
Intrinsic strangeness

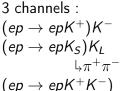
 Possible contribution near threshold

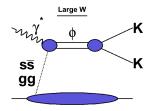

> ss pair knockout strange quark GPD in the ERBL region


HERMES data hints

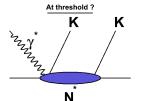

$$s+\overline{s}\neq 0$$
 at large \times ?
A. Airapetian *et al.*,
Phys. Lett. B 666 (2008) 446


- Very interesting if found!
- Theoretical studies in progress


CLAS12 kinematic coverage



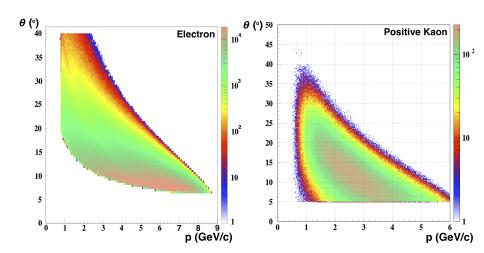
$$(ep \rightarrow epK^+K^-)$$
Simulations done with generator


10 8 adjusted to world data O2 vs -t

ϕ detection mode

Large acceptance allows simultaneous detection of several decay modes

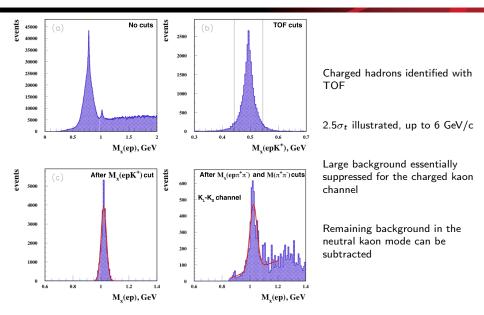
World first measurement in the neutral mode

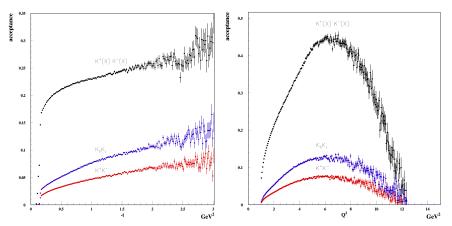

Different production mechanisms $\rightarrow \neq$ kinematical dependencies $K_1 K_5 \stackrel{?}{=} K^+ K^-$

Important cross-check for

Universality

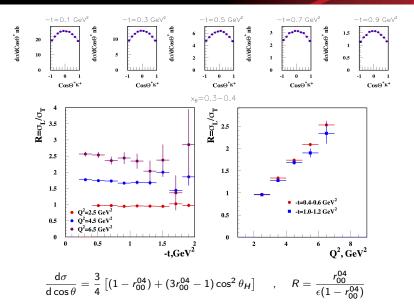
Experimental systematic check


Particle kinematic coverage

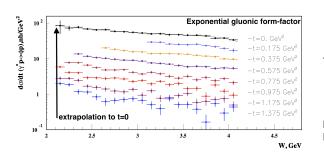


June 18th 2012

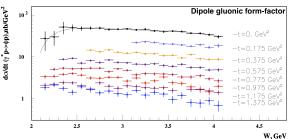
Particle identification



Acceptance


Control over acceptance systematic errors using several channels

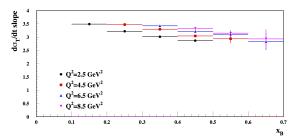
Extraction of the LT-ratio



Projected results for the cross-sections

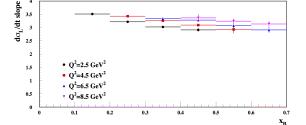
Test the reaction mechanism $\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t=0)$ as a function of W

Extrapolation $t \to 0$ Below t_{\min}

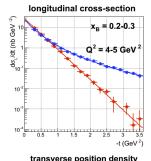


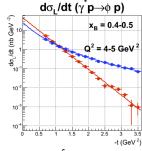
Good coverage

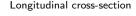
 \rightarrow accurate extrapolation exponential versus dipole FF

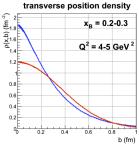

Projected t-slopes

t-slopes as functions of x as functions of Q^2


 Q^2 independence : ightarrow small-size $qar{q}$ pair




change with x: \rightarrow Gluonic size

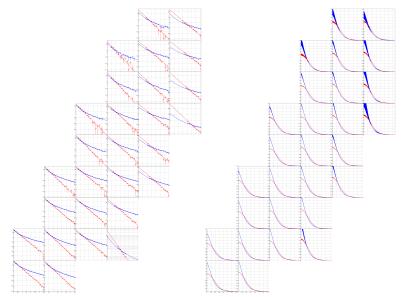


Extraction of gluonic profiles

Corresponding sensitivity in transverse position space

$$b = 1/\sqrt{-t}$$

Error propagation study Skewness $\xi \neq 0$ neglected


Summary and beam-time request

- ullet PR12-12-007 : Exclusive ϕ Electroproduction with CLAS12
- Gluonic radius in the valence region : essentially unknown
- Unique channel for probing the gluonic structure at 11 GeV
- Missing piece of the larger GPD program with CLAS12
- Test the reaction mechanism and approach to small-size configuration dominance
- Extract the glue average radius in the valence region and explore the change of profile with x_B
- Request : 60 days of beam time at $\mathcal{L}=10^{35}~\text{cm}^{-2}\text{s}^{-1}$
- Can run in parallel with proton group

Supplementary slides

Projected gluonic radius

June 18th 2012