Measurement of the Ratio $R=\sigma_L/\sigma_T$ in Exclusive and Semi-Inclusive π^0 Production

A. Camsonne, S. Covrig, P. Degtiarenko, R. Ent, D. Gaskell, M. Jones, V. Kubarovsky, P. Nadel-Turonski, B. Sawatzky, P. Solvignon, M. Ungaro, S. Wood, I. Albayrak, M. Carmignotto, J. Denes-Couto, N. Hlavin, T. Horn*, F. Klein, M. Metz, *B. Nepal*, L. Rothgeb, O. Ates, M.E. Christy, C. Jackson, C.E. Keppel, M. Kohl, N. Kalantarians, P. Monaghan, A. Pushpakumari, L. Tang, J. Taylor, T. Walton, A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan, S. Zhamkochyan, C. Hyde, M. Guidal, C. Munoz-Camacho, A. Gasparian, M. Khandaker, V. Punjabi, F. Sabatie, G. Huber, W. Li, E. Brash, D. Dutta, G. Niculescu, I. Niculescu, Y. Illieva, S. Strauch, P. Markowitz, J. Reinhold, A. Sarty, P. King, J. Roche, J. Arrington, K. Hafidi, P. Reimer, P. Stoler, I. Bedlinskiy New collaborators in blue

JLab, CUA, HU, Alikhanyan NSL, ODU, IN2P3, NC A&T, Norfolk State, CEA-Saclay, Regina, CNU, Mississippi, JMU, U. South Carolina, FIU, Saint Mary's, Ohio, ANL, RPI, ITEP

Hadron production Reaction Dynamics

- In Semi-Inclusive DIS (SIDIS) one observes a single hadron carrying a fraction z of the photon energy in the target rest frame, in a final state of any multiplicity
 - At sufficiently high Q^2 , cross section factorizes into target distribution and fragmentation functions (at LO, after integration over p_T and ϕ)
 - Flavor decomposition by tagging the active parton through its fragmentation properties
 - Distribution of spin and transverse momentum (TMD) carried by quarks in the nucleon
- In the exclusive limit (z→1) the final state recoiling baryon together with single meson carries the full photon energy
 - Hard-soft factorization theorem proven for longitudinal photons at sufficiently high Q²
 - Non-perturbative (soft) physics represented by GPDs

Ratio R=σ_L/σ_T in the Exclusive limit

- Production of π⁺ and K⁺ feature a meson exchange contribution in the t-channel (pole term), whose impact on factorization has to be understood
- In π° production the pole term is suppressed
 - The t-dependence at small t can thus be associated with the structure of the nucleon rather than its pion cloud
 - $\circ \quad \mbox{A large } R = \sigma_L / \sigma_T \mbox{ would imply the realization} \\ \mbox{of the factorization theorem}$
 - A large response in σ_L may indicate nonpole contributions in π^+ production

Comparison of R in π° and π^{+} production important for understanding:

- Pole and non-pole contributions in nucleon (spin) structure studies
- Non-pole contributions in F_{π} extraction

Transverse Contributions

- Recent data suggest that transversely polarized photons play an important role in pion electroproduction
 - Hall C π^+ : σ_L follows scaling prediction, σ_T does not follow the corresponding expectation
 - HERMES π⁺: sin φ modulation is large [Airapetian et al, Phys. Lett. B 682, 345 (2010)]
 - CLAS: π⁰ data show substantial fraction of σ_{TT} in the unseparated cross section [Kubarovsky10+]
- Recent theoretical developments suggest no strong suppression of σ_T at experimentally accessible values of Q^2 [Goloskokov, Kroll Eur. Phys. J. C 65, 137 (2010); Eur. Phys. J. A 45, 112 (2011)]
 - For π^{o} large σ_{T} may allow access to helicity flip GPDs

[Horn et al., Phys. Rev. C 78, 058201 (2008)]

Measurement of the relative σ_L and σ_T contributions to the π° cross section important for reliable interpretation of data from 12 GeV JLab GPD program,

Relative σ_L and σ_T unknown for neutral pions

- GPD studies with pions require understanding relative contributions of σ_{L} and σ_{T}
- Is the relative contribution of σ_L in π production significant?
 - Understand the size of non-pole contributions in π^+ production
 - 12 GeV: Opportunity to compare to separated σ_L and σ_T in π^+ production (E12-07-105)
- Unseparated π data from Hall A suggest that σ_L may be larger than predicted by models and shows no t-dependence

 σ_L/σ_T important for studies of scaling in neutral systems and understanding of pole and non-pole contributions 5

Ratio $R=\sigma_L/\sigma_T$ in SIDIS

- Experimental studies of R_{SIDIS} are needed for proper analysis and interpretation of SIDIS measurements and angular asymmetries
 - In the asymptotic limit, the ratio disappears like Q⁻² and $R_{SIDIS} = R_{DIS}$
 - For intermediate energies, expect differences as function of z and Q²
 - Fractional uncertainties to asymmetries ~ $\epsilon \delta R$

- A comparison of charged (E12-06-104) and neutral pions in the transition from SIDIS to exclusive scattering may shed further light on the reaction mechanism
 - Behavior of charged and neutral pions in transition to the exclusive limit expected to be different
 - Verify naïve assumption $\pi^0 = (\pi^+ + \pi^-)/2$
 - \circ ~ In kaon case, for example, huge differences between $D_u{}^{K\!+}$ and $D_s{}^{K\!+}$
 - Sensitivity to target-mass and higher-twist contributions at JLab energies
 - $\rho \rightarrow \pi^+\pi^-$ contributions non-existing for π^0

Exclusive limit of SIDIS								
	π+	π-	π 0					
)	pole	Х	-					

pole

Х

n

There **should** be differences between $R(\pi^+)$ (and $R(\pi^-)$) & $R(\pi^0)$ at intermediate energies \rightarrow *must* know these for a *proper analysis and interpretation* of TMD measurements and corresponding angular asymmetries

Motivation Summary

- Measuring R in the exclusive limit is important for the interpretation of data from the GPD and form factor program at JLab 12 GeV
 - Relative σ_{L} and σ_{T} contributions are essential for GPD studies
 - Comparison of π and π^+ to understand size of pole and non-pole contributions
- Understanding the nature of the SIDIS process is important for the TMD program at 12 GeV JLab
 - SIDIS analyses require knowledge of R and information on target-mass and highertwist contributions
 - Comparative studies of SIDIS and exclusive limit can further elucidate reaction mechanism

Knowledge on R = σ_L/σ_T in π^0 production is non-existing!

Theory Report Summary

THYTAC39: "...the motivation for this experiment remains as strong as it was at PAC38..."

Goals of the Experiment

• Measure the separated π cross section as a function of z at fixed (x_B,Q²)

- Simultaneous separation of the cross section components for both deep exclusive and semi-inclusive reactions
- First L/T measurement above the resonance region in π^0 production over a wide range of Q² and z, up to the exclusive limit
- Test the appropriateness of the equality $\pi = (\pi^+ + \pi^-)/2$
- Measure the Q²-dependence at fixed x_B=0.5 and t=0.4 to investigate scaling behavior of neutral-pion systems
 - Simultaneous separation of the cross section components for both deep exclusive and semi-inclusive reactions
 - Highest Q^2 and largest Q^2 lever arm in L/T separated π production

• Measure relative σ_L and σ_T contributions at fixed values of t'=t-t_{min} and W

- Simultaneous separation of the cross section components: L, T, LT, TT for DES
- Study importance of pole and non-pole contributions

π^{o} L/T facility in Hall C

- New PbWO₄ calorimeter provides π^{o} detection facility in Hall C
 - Initially for C12-11-102
- C12-11-102 data will provide opportunities to extend separations program for DVCS
 - initial DVCS separation
 - extensions to a broader kinematic range anticipated

MRI Consortium proposal submitted Jan 2012: CUA, ODU, FIU, JLab, Yerevan

C12-11-102: Summary of PAC38 Report Conditions

✓ Placed emphasis in the choice of kinematics on DES

- Note that with the proposed setup exclusive and semi-inclusive data are accumulated simultaneously
- ✓ Clarified discussion of predictions for $R=\sigma_L/\sigma_T$ in the context of count rates and included a new calculation by GK
 - Theoretical predictions for R in the exclusive limit give similar values for realistic experimental bins. The average of VGG and VGL is generally compatible with calculations from GK

✓ Performed detailed simulations of the π^{0} detector including charged and neutral backgrounds to study the π^{0} detection efficiency

- Already had realistic particle fluxes at PAC38 as provided by RadCon calculation
- Using a GEANT4 simulation with realistic event generator verified that combinatorial background is indeed small as already shown with analytic estimates at PAC38
- Improved the PMT base to have linearity up to the largest expected rates
- Provided more detail on the detection efficiency, which is stable to better than 0.5%

All conditions from the PAC 38 report have been addressed

Background Simulations

Background calculations performed by RadCon group (P. Degtiarenko)

- Provide realistic fluxes of particles
- Checked against 15+ years of radiation background measurements
- Used for scheduling purposes to remain under DOE limits outside the Hall domes
- Used to quantitatively estimate backgrounds and required shielding configurations for, e.g., G0 and Qweak

GEANT4 Detector Simulations

- Includes photons from π decay ٠
 - Simulate π signal normalized to rate.
 - For each event decay π into 2 γ
- Simulated background consists of realistic fluxes of neutral and charged particles, the latter suppressed by sweeper magnet
- Photon pair is selected from other processes in the calorimeter using a cluster finding algorithm
- π invariant mass reconstructed for each hit in the calorimeter

Combinatorial background is small (<1%)

Detector Linearity and Efficiency

- Realistic background simulations show that main contribution is low-energy photons
- With improved PMT base design gain stable to 0.2% for all kinematics and background conditions
 - factor ~25 improvement compared to PRIMEX!
- Low-energy background can give (small) baseline shift
 - Event-by-event subtraction using signal sampling fADCs
- Verified that combinatorial background is small (<1%), assumed to be known to 0.2-0.5%
- Geometric acceptance known to better than 0.1%
 - Depends on survey and actual beam position

π detection efficiency is stable to better than 0.5%

Experiment Overview

HMS + SHMS/ π Accessible Phase Space for *Deep Exclusive Scattering*

 π calorimeter in a natural way allows accumulation of exclusive and semiinclusive data in parallel

Projections for $R = \sigma_L / \sigma_T$

Relative contribution of σ_L and σ_T in the exclusive limit

- GPD studies with pions require understanding relative contributions of σ_{L} and σ_{T}
 - A large $R = \sigma_L / \sigma_T$ would imply the realization of the factorization theorem
- Understand the relative contribution of σ_L in π production
 - 12 GeV: Opportunity to compare to π^+ cross sections (E12-07-105)
 - Significant response in σ_L in π^o could indicate non-pole contributions in π^+ production
 - \circ If non-pole contributions smaller than anticipated may extract F_{π} to higher Q^2

C12-11-102: Relative σ_L and σ_T for for reliable interpretation of data from 12 GeV JLab GPD program and form factor studies

Beam Time Estimate

Q ² (GeV ²)	x _B	LH ₂ (hrs)	Dummy	Overhead (hrs)	Total (hrs)
2.00	0.20	50	7	4	61
3.00	0.30	217	33	4	254
4.00	0.40	141	21	4	166
Subtotal R mapping					481 (20 days)
3.50	0.50	63	9	4	76
4.00	0.50	96	15	4	115
5.10	0.50	300	46	4	350
Subtotal Q ² scan					541 (22.5 days)
2.45	0.50	222	34	4	260
3.80	0.50	31	5	4	40
Subtotal t scan					300 (13.0 days)
LD2		51		2	53 (2 days)
SIDIS enhanced $\Delta\epsilon$		103	16	4	123 (5 days)
Subtotals/π		1274	186	38	1498.0
Calibrations					48.0
Calorimeter curing					72.0
Beam energy					32.0
Total					1650 (69 days)

C12-11-102 Summary

- Relative σ_L and σ_T contributions are essential for GPD studies through π^o electroproduction
- Comparison of the π and π^+ L/T ratio in the exclusive limit is of significant interest for pole/non-pole contribution and form factor studies at 12 GeV
- L/T separated π production data are important for understanding the SIDIS process
- Our theoretical understanding of hard (partonic?) reactions will benefit from π° data on relative σ_{L} and σ_{T} contributions
 - TMD, GPD, and studies of SIDIS and exclusive limit
 - Compare trends in neutral and charged pion production, $\pi^{\circ} = (\pi^{+} + \pi^{-})/2$

Conditions of PAC38 have been addressed. Request full approval of C12-11-102.

• Experiment provides a neutral-pion spectrometer facility in Hall C

Azimuthal coverage

The 25 msr solid angle provides good ϕ coverage over a range of p_T/t

Systematic Uncertainties

Source	pt-to-pt (%)	Scale (%)
Acceptance	0.4	1.0
Electron PID	<0.1	<0.1
π^{o} detection efficiency	0.5	1.0
ElectronTracking Efficiency	0.1	0.5
Charge	0.5	2.0
Target Thickness	0.2	0.5
Kinematics	0.4	<0.1
Total (incl. rad, mod)	1.6	3.4
Total	0.9	2.5

 π^{o} detection efficiency stable to 0.5%

- Gain stable to 0.2% for all kinematics and background conditions
- Temperature stability better than 0.2%
- Background (e.g., combinatorial) known to 0.2-0.5%
- Geometric acceptance known to better than 0.1%

yy coincidence time window

Representative event

Model Comparison for Rate Estimates

- R not well known above resonance region
 - Theoretical predictions for σ_L disagree at $t=t_{min}$
 - In a realistic bin, the differences are quite modest and average value provides very reasonable estimate of count rate
- Average of VGG/VGL generally compatible with calculations from Goloskokov/Kroll (GK)

• Relative σ_L and σ_T data would be of great interest for understanding transverse contribution in pion data