#### Proposal C12-11-108:

#### Target Single Spin Asymmetry in SIDIS (*e*, $e'\pi^{\pm}$ ) Reaction on a Transversely Polarized Proton Target and SoLID

Kalyan Allada Jefferson Lab

On Behalf of J. P. Chen (JLab), Haiyan Gao (Duke), Xiaomei Li (CIAE), Z-E. Meziani (Temple) for C12-11-108 and Hall A Collaboration

PAC39 Meeting, June 18<sup>th</sup> 2012



### **Motivation**

- Leading twist Parton Distribution Function
  - Unpolarized PDF :  $f_1(x)$  (very well known)
  - Longitudinally polarized:  $g_1(x)$  (well known)
  - Transversity:  $h_1(x)$  (least known)
- Experimental efforts to measure  $h_1$  have recently begun
- First global extraction of transversity DF (Anselmino et al., 2007)
  - Related to nucleon tensor charge (first moment of  $h_{i}(x)$ )
- Nucleon spin puzzle:
  - Orbital angular momentum of quarks and gluons is important
- Transverse Momentum Dependent PDFs
  - Mapping of 3-d structure in momentum space
  - Access OAM through spin-orbit correlations
  - Study QCD dynamics
  - Semi-Incluisve DIS is an ideal tool to measure TMDs





#### Leading Twist Transverse Momentum Dependent PDFs



 $\boldsymbol{f}_{_1},\,\boldsymbol{g}_{_{1L}}$  and  $\boldsymbol{h}_{_1}$  survive integration over quark transverse momentum  $\boldsymbol{k}_{_{T}}$ 

#### Leading Twist Transverse Momentum Dependent PDFs



Accessible using transversely polarized target

 $\boldsymbol{f}_{_1},\,\boldsymbol{g}_{_{1L}}$  and  $\boldsymbol{h}_{_1}$  survive integration over quark transverse momentum  $\boldsymbol{k}_{_{T}}$ 

#### **Separation of Azimuthal Moments**

$$\begin{aligned} A_{UT}(\varphi_h^l,\varphi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) \\ A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$$

SIDIS SSAs depend on 4-D variables (x,  $Q^2$ , z and  $P_T$ ) Large angular coverage and precision measurement of asymmetries in 4-D phase space is essential.



- HERMES(p), COMPASS(p,d) and Hall-A(n)
- Initial model-dependent extraction of transversity: • Global fit to HERMES(p) and COMPASS (d) and BELLE e+e- data by Torino group (Anselmino et al.)
- Need precision data in high x region

### Transversity

 $\sigma_{UT}^{SIDIS} \propto \sin(\phi_h + \phi_S) \ h_1 \otimes H_1^{\perp}$ 

Transversely polarized guark generates left-right asymmetry during fragmentation





**Collins Effect** 

COMPASS 2007 proton data COMPASS preliminary HERMES PLB 693 (2010) 0.1🛛 🏚 姠 COMPASS -0.1HERMES negative  $\pi$ positive  $\pi$ -0.2 $10^{-2}$  $10^{-2}$  $10^{-1}$  $10^{-1}$ x x C. Schill, DIS2011 Workshop





• Sign change from SIDIS to DY - important test of TMDs factorization in QCD

- Initial model-dependent extraction of Sivers DF
  - Using HERMES and COMPASS proton data and TMD evolution (Anselmino *et al.* )
- Constrain quark OAM using GPD *E* and Sivers DF Bacchetta *et. al,* Phys. Rev. Lett. 107, 212001 (2011)
- Very active theory and phenomenological efforts -0.2 to understand parton dynamics using TMDs

# **Sivers Function**

$$\sigma_{UT}^{SIDIS} \propto \sin(\phi_h - \phi_S) \; f_{1T}^{\perp} \otimes D_1$$

Correlation between transverse spin of nucleon and transverse momentum of the quark





C. Schill, DIS2011 Workshop

#### **World Data on Transverse SSA**

(proton, deuteron, <sup>3</sup>He)

Target SSA on transversely polarized targets



Moments integrated over other dimensions ( $Q^2$ , z,  $P_T$ )

## Pretzelosity

 $A_{UT}^{sin(3\phi_{1}^{}-\phi_{3}^{})}$ 

0.1F

0.05

-0.05

-0.1



Correlation between transverse momentum and transverse polarization of the nucleon

$$\sigma_{UT}^{SIDIS} \propto \sin(3\phi_h - \phi_S) \ h_{1T}^{\perp} \otimes H_1^{\perp}$$



- Access to quark OAM (model dependent)
- Limited precision no clear signal seen yet!



**Dissertation (HERMES)** 

#### **Trans-Helicity**

$$\sigma_{LT}^{SIDIS} \propto \cos(\phi_h - \phi_S) \ g_{1T} \otimes D_1$$

 $\boldsymbol{g}_{1T}$ 

- Leading twist TMD
- T-even, chiral-even
- No GPD correspondence
- Accessible using polarized beam+ polarized target
- $g_{1T}$  dominated by ~ Re[(L=0) x (L=1)] -> spin-orbit correlation
- First non-zero  $A_{IT}$  signal from Hall-A E06-010 experiment using polarized <sup>3</sup>He







Light-Cone CQM by B. Pasquini B.P., Cazzaniga, Boffi, PRD78, 2008

# **Proposed Experimental Goals**

- Provide ultimate precision  $4d(x, z, P_{\tau}, Q^2)$  mapping of target SSA in the valence quark region
- Flavor decomposition of Transversity, Sivers and Pretzelosity (when combined with neutron data)
- Extract tensor charge of both u and d-quark to better than 10% accuracy combined with <sup>3</sup>He SoLID data
- Extract leading-twist TMD  $g_{1T}$  using Double Spin Asymmetry

$$P = u_p\left(\frac{4}{9}\right) \oplus u_p\left(\frac{4}{9}\right) \oplus d_p\left(\frac{1}{9}\right) = u_p\left(\frac{8}{9}\right) \oplus d_p\left(\frac{1}{9}\right) \qquad \text{Dominated by u-quark}$$
$$N = u_n\left(\frac{4}{9}\right) \oplus d_n\left(\frac{1}{9}\right) \oplus d_n\left(\frac{1}{9}\right) \stackrel{C.S.}{=} d_p\left(\frac{4}{9}\right) \oplus u_p\left(\frac{2}{9}\right) \qquad \text{Sensitive to d-quark}$$

### PAC 38 Report

#### • Strong endorsement from PAC38

**Motivation:** This experiment will measure the semi-inclusive cross-sections for  $\pi^+$  and  $\pi^-$  production from a transversely polarized proton target, using the large acceptance detector "SoLID" in Hall A. By mapping out the dependence of the target single spin asymmetry on the angle  $\phi_h$  of the hadronic plane and the angle  $\phi_s$  of the target spin (relative to the leptonic plane), one can (in principle) extract three of the leading twist transverse momentum-dependent structure functions (TMDs) of the proton. Measuring double spin asymmetries (with beam helicity) simultaneously, a forth TMD becomes available. Together with equivalent measurements on <sup>3</sup>He (n), this type of experiment is crucial for a complete picture of the 3-D quark structure of the nucleon.

#### **Questions/concerns raised by PAC38**

- Complete design of the target magnet with proposed opening angle
- Interactions between magnets, affect of resultant forces on each other and field uniformity
- Detailed simulation of the backgrounds and effect on detector performance/tracking

# **Experiment Overview**

 $e + p^{\uparrow} \longrightarrow e' + \pi^{+/-} + X$ 

- Measure SSA in SIDIS using transversely polarized proton target
- Use similar detector setup as that of two approved <sup>3</sup>He-SoLID SIDIS expts.
- Use JLab/UVa polarized NH<sub>3</sub> target with upgraded design of the magnet
- Target spin-flip every 2 to 4 hours with average in-beam polarization of 70%
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 100nA current: 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Beamline chicane to transport beam through 5T target field



# **Polarized Proton Target**

- Well known system used in many experiments at Jlab/SLAC
  - 3 cm long NH<sub>3</sub> target
  - Dynamic Nuclear Polarization(DNP) using microwave pumping
  - 5 Tesla superconducting magnet
  - 1K refrigerator
  - NMR system for polarization measurement
  - Spin-reversal using microwaves
  - Magnet cone:
    - Opening of +/- 45° in longitudinal direction
    - Opening of +/-  $17^{\circ}$  in transverse direction
- Most recently used in Hall-A for g2p/gep experiments
  - Very successful with 90% polarization
- Proposed upgrade of the magnet:
  - Larger opening in transverse direction (+/- 25°)
- Preliminary design report from Oxford Instruments ready
- Possible improvements:
  - Fast spin-reversal using RF induced adiabatic fast passage (AFP)
  - Improved packing fraction using target disks





#### Acceptance

• Opening angle of 25° can cover almost all of the proposed phase space

- Loss in statistics is negligible (less than 5% for 11 GeV)
- $\bullet$  New magnet with 25° opening angle is possible





#### Phase space with different opening angle in transverse direction



#### **New Target Magnet Design Study**

• Preliminary report from Oxford Instruments is now available!

5 tesla

- Central Field
- Field Direction
- Split Access
- Homogeneity
- Operating temperature
- Field stability
- Bore Access
- Operating current

horizontal  $\pm 25$  degrees minimum 1 part in 10<sup>4</sup> over a 15mm diameter spherical volume 4.2 K. better than 10<sup>-4</sup> per hour in the persistent mode as allowed by split requirement < 120 amps

#### **Conclusion :**

Preliminary analysis indicates that 5 tesla with +/-25 degrees split access is possible

## **Background Studies**

- Background simulations done using GEANT3 model
- In general background is lower than <sup>3</sup>He-SoLID SIDIS

proposal

- Low momentum particles (< 400 MeV/c) are suppressed in the acceptance due to transverse target field
- "Sheet of flame" background : high rates in localized area of the acceptance
  - caused by the 5 T target field
  - dominated by changed particles (e<sup>-</sup>/e<sup>+</sup>)





- Ways to deal with this background:
  - Turn off affected sectors of the detectors (preferred)
  - Add local shielding at the target (under study)

### **Background Rates**

- Rates on GEM chamber < 1 kHz/mm<sup>2</sup> (GEMs can handle much higher rates)
- Fairly localized background in the GEM chambers
- Hit multiplicities are lower than <sup>3</sup>He-SoLID proposal (due to lower luminosity with NH<sub>3</sub> target)
- Tracking is not an issue a well demonstrated in the <sup>3</sup>He-SoLID SIDIS proposal
- Front-end APV25 chips for GEMs designed to withstand high radiation dose (up to 10 MRad)
- Radiation limit for the calorimeter: 500 kRad
  - Expected radiation dose in 94 days run : < 100 kRad



#### **Magnet Interaction and Field Uniformity**

- TOSCA calculation was done to study magnet interactions
- Forces between magnets manageable
  - About ~7.7 ton on iron plate in front of SoLID
  - Much smaller on the target coil (~0.25 ton)
- Recent experience with g2p/gep experiment is encouraging
  - Use 5 Tesla polarized target + pair of septum magnets close to target
  - No major problem due to magnet forces



# **Kinematics Coverage**



Coverage with 11 GeV beam (forward and large angle)

• 
$$x_B = 0.05 - 0.68$$
  
•  $Q^2 = 1.0 - 8.0 (GeV/c)^2$   
•  $P_T = 0 - 1.4 GeV/c$   
•  $z = 0.3 - 0.7$   
•  $W > 2.3 GeV$ 



# **Estimated Systematic Uncertainties**

| Sources                  | Туре     | Collins(π+) | Collins(π-) | Sivers(π+) | Sivers(π-) |
|--------------------------|----------|-------------|-------------|------------|------------|
| Raw asymmetry            | absolute | 6.5E-4      | 6.5E-4      | 6.5E-4     | 6.5E-4     |
| Dilution factor          | relative | 5%          | 5%          | 5%         | 5%         |
| Diffractive vector meson | relative | 3%          | 2%          | 3%         | 2%         |
| Radiative correction     | relative | 2%          | 2%          | 2%         | 2%         |
| Target polarization      | relative | 3%          | 3%          | 3%         | 3%         |

• Other systematics:

- Detector efficiency/acceptance/luminosity : < 2 % in each spin-pair
- Target polarization direction, random background: negligible
- For contributions from  $A_{\mu}$ , we will take dedicated data

# **A**<sub>UT</sub> **Projections**

0.2

0.5

0.4

- Projections for one out of 48 panels in Q<sup>2</sup> and z
- Partial loss of azimuthal coverage due to "sheet of flame" background taken into account
- Dilution and packing fraction included

Ŧ

0.2

Ŧ

Ŧ

Ŧ

0.3

COMPASS

Vogelsang and Yuan

Anselmino et al.

Pasquini et al. Ma et al.

120 days SoLID

Ŧ

0.1

HERMES

P<sub>T</sub> (GeV/c)

1.2

0.8

0.6

0.4

0.2

0



#### **Impact of Proposed Measurement**



- Only Sivers function is shown
- Similar precision on transversity distribution
- Current experimental uncertainties in large light grey band
- Projected uncertainties in dark grey band

# **Beam Time Request**

|                                 | Time (Hour) | Time (Day)             |
|---------------------------------|-------------|------------------------|
| Trans. Pol. $NH_3$ at 11 GeV    | 1320        | 55                     |
| Trans. Pol. $NH_3$ at 8.8 GeV   | 660         | 27.5                   |
| Longi. Pol. $NH_3$ at 11 GeV    | <b>6</b> 0  | 2.5                    |
| Longi. Pol. $NH_3$ at 8.8 GeV   | 36          | 1.5                    |
| Dilution measurements           | 36          | 1.5                    |
| optics and detector calibration | 144         | 6                      |
| Target Overhead                 |             |                        |
| regular annealing               | 624         | 26                     |
| Total Time Request              | 2256 + 624  | $94{+}26 \text{ days}$ |

#### We request a total of 120 days of beam time

# **Summary**

- We propose to perform a precision 4-d mapping of target SSA using SoLID and polarized NH<sub>3</sub>(p) target
  - Flavor separation of TMDs when combined with <sup>3</sup>He(n) data
  - Constrain u and d-quark tensor charge
  - Complete 3D imaging of the nucleon in momentum space
- SoLID is an ideal device to carry out such precision measurements:
  - High luminosity, large acceptance and full azimuthal coverage
  - Will provide most precise SSA/DSA data in the kinematic region 0.05<x<0.68, 0.3<z<0.7,  $P_{\tau}$  up to 1.4 GeV/c and Q<sup>2</sup> up to 8.0 (GeV/c)<sup>2</sup>
  - Crucial input to global analysis of TMDs
- Updated proposal addresses all the issues/concerns raised by PAC38
- Global efforts to study TMDs:
  - **SIDIS: JLab**, HERMES, COMPASS, Future EIC
  - **Drell-Yan:** RHIC spin, Fermilab DY program, GSI/FAIR etc..

# **Spare Slides**

#### SoLID vs CLAS12 (Figure of Merit)

- Luminosities :  $1x10^{35}$  (SoLID) vs  $5x10^{33}$  (CLAS)
- FOM =  $N*P^{2*}f^{2}$

(N = Ave. number of events, P = polarization, f=dilution)

- N<sub>SOLID</sub>(N<sub>CLAS</sub>) = 1.56e9 (0.40e8)
- $P_{SoLID}(P_{CLAS}) = 70\% (60\%)$
- $f_{SOLID}(f_{CLAS}) = 0.13 (0.33)$
- FOM<sub>SOLID</sub> : FOM<sub>CLAS</sub> = 8 : 1

Based on proposal C12-11-111

#### **SoLID and CLAS12 Phase Space**



W > 2.0 GeV

W > 2.3 GeV

# A<sub>UT</sub> Projections ( $π^+$ Sivers)

| Q <sup>2</sup> = 1.0 (GeV/c) <sup>2</sup>                    | (51.2<br>1<br>0.8<br>0.4<br>0.4<br>0.2<br>0.2                                    | 1 < Q <sup>2</sup> < 2<br>Hiji 0,30 < z < 0.35                                   | 1 < Q <sup>2</sup> < 2<br>II I 0.35 < z < 0.40                                   | I 1 < Q <sup>2</sup> < 2<br>III 10.40 < z < 0.45<br>IIII -<br>IIII -<br>IIII -<br>IIII -   | H       1 < Q <sup>2</sup> < 2         HII       10.45 < z < 0.50         HII       -         HIII       -         HIII       -         HIII       - | I 1 < Q <sup>2</sup> < 2<br>III 10.50 < z < 0.55<br>IIII •<br>IIII •<br>IIII •<br>IIII •            | I 1 < Q <sup>2</sup> < 2<br>III 10.55 < z < 0.60<br>IIII I<br>IIII I<br>IIII I<br>IIII I    | I 1 < Q <sup>2</sup> < 2<br>II = 0.60 < z < 0.65<br>III =<br>III =<br>III =<br>III =<br>III =                                  | I       1 < Q <sup>2</sup> < 2       0.         II       0.65 < z < 0.70       0.         IIIII       0.       0.         IIIIII       0       0.         IIIIII       0       0.         IIIIII       0       0. |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-dimensional<br>binning in<br>x, Q², p <sub>T</sub> , z | 0.4<br>0.6<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | 2 < Q <sup>2</sup> < 3<br>0.30 4 z < 0.35<br>111 1<br>1111 1<br>1111 1<br>1111 1 | 2 < Q <sup>2</sup> < 3<br>0.35 < z < 0.40<br>III I<br>IIII ·<br>IIII ·<br>IIII · | 2 < Q <sup>2</sup> < 3<br>0.40 < z < 0.45<br>III I<br>IIII I<br>IIII I<br>IIII I<br>IIII I | 2 < Q <sup>2</sup> < 3<br>0¥45 < z < 0.50<br>IIII<br>IIII<br>IIII<br>IIII<br>IIII<br>IIII<br>IIII                                                    | 2 < Q <sup>2</sup> < 3<br>Oi50 < z < 0.55<br>IIIIII<br>IIIIII<br>IIIIII<br>IIIIII<br>IIIIII<br>IIII | 2 < Q <sup>2</sup> < 3<br>0.55 < z < 0.60<br>I I<br>I I I<br>I I I<br>I I I<br>I I I<br>I I | 2 < Q <sup>2</sup> < 3<br>0.60 < z < 0.65<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | 2 < Q <sup>2</sup> < 3<br>0.65 < z < 0.70<br>I<br>0.65 < z < 0.70<br>I<br>0<br>I<br>I<br>0<br>I<br>I<br>0                                                                                                         |
| (674 bins in total)                                          | P <sub>T</sub> (GeV/c)                                                           | 3 < Q <sup>2</sup> < 4<br>0.30 < z < 0.35<br>I                                   | 3 < Q <sup>2</sup> < 4<br>0.35 < z < 0.40<br>I                                   | 3 < Q <sup>2</sup> < 4<br>0.40 < z < 0.45                                                  | 3 < Q <sup>2</sup> < 4<br>0.45 < z < 0.50                                                                                                            | 3 < Q <sup>2</sup> < 4<br>0.50 < z < 0.55                                                           | 3 < Q <sup>2</sup> < 4<br>0.55 < z < 0.60                                                   | 3 < Q <sup>2</sup> < 4<br>0.60 < z < 0.65                                                                                      | 3 < Q <sup>2</sup> < 4 0.<br>0.65 < z < 0.70 <sup>0</sup>                                                                                                                                                         |
|                                                              | 0.8<br>0.4<br>0.2<br>0                                                           | I I<br>I I I<br>I I                                                              | 1<br>1 1<br>1 1                                                                  | I I<br>I                                                                                   | II I                                                                                                                                                 | I I I                                                                                               | I <sub>I I</sub>                                                                            | I                                                                                                                              | - <u>-</u> -0<br>0<br>0                                                                                                                                                                                           |
|                                                              | P <sub>T</sub> (GeV/ <u>c</u> )<br>8 1 7                                         | 4 < Q <sup>2</sup> < 5<br>0.30 < z < 0.35                                        | 4 < Q <sup>2</sup> < 5<br>0.35 < z < 0.40                                        | 4 < Q <sup>2</sup> < 5<br>0.40 < z < 0.45                                                  | 4 < Q <sup>2</sup> < 5<br>0.45 < z < 0.50                                                                                                            | 4 < Q <sup>2</sup> < 5<br>0.50 < z < 0.55                                                           | 4 < Q <sup>2</sup> < 5<br>0.55 < z < 0.60                                                   | 4 < Q <sup>2</sup> < 5<br>0.60 < z < 0.65                                                                                      | 4 < Q <sup>2</sup> < 5<br>0.65 < z < 0.79<br>-0.                                                                                                                                                                  |
|                                                              | 0.6<br>0.4<br>0.2<br>0                                                           | I I                                                                              | I I                                                                              | II                                                                                         | I                                                                                                                                                    | Ĩ                                                                                                   | I                                                                                           | I                                                                                                                              | 0<br>I<br>-0<br>-0                                                                                                                                                                                                |
|                                                              | P <sub>T</sub> (GeV/c)                                                           | 5 < Q <sup>2</sup> < 6<br>0.30 < z < 0.35                                        | 5 < Q <sup>2</sup> < 6<br>0.35 < z < 0.40                                        | 5 < Q <sup>2</sup> < 6<br>0.40 < z < 0.45                                                  | 5 < Q <sup>2</sup> < 6<br>0.45 < z < 0.50                                                                                                            | 5 < Q <sup>2</sup> < 6<br>0.50 < z < 0.55                                                           | 5 < Q <sup>2</sup> < 6<br>0.55 < z < 0.60                                                   | 5 < Q <sup>2</sup> < 6<br>0.60 < z < 0.65                                                                                      | 5 < Q <sup>2</sup> < 6 0.<br>0.65 < z < 0.70 <sup>-</sup><br>-0.1                                                                                                                                                 |
|                                                              | 0.6<br>0.4<br>0.2<br>0                                                           | I                                                                                | Ĩ                                                                                | E                                                                                          | 1                                                                                                                                                    | I                                                                                                   | I                                                                                           | ł                                                                                                                              |                                                                                                                                                                                                                   |
|                                                              | (5.2<br>1<br>(€<br>0.6                                                           | . 6 < Q <sup>2</sup> < 8<br>0.30 < z < 0.35                                      | 6 < Q <sup>2</sup> < 8<br>0.35 < z < 0.40                                        | 6 < Q <sup>2</sup> < 8<br>0.40 < z < 0.45                                                  | 6 < Q <sup>2</sup> < 8<br>0.45 < z < 0.50                                                                                                            | 6 < Q <sup>2</sup> < 8<br>0.50 < z < 0.55                                                           | 6 < Q <sup>2</sup> < 8<br>0.55 < z < 0.60                                                   | 6 < Q <sup>2</sup> < 8<br>0.60 < z < 0.65                                                                                      | 6 < Q <sup>2</sup> < 8<br>0.<br>0.65 < z < 0.70                                                                                                                                                                   |
| Q <sup>2</sup> = 8 (GeV/c) <sup>2</sup>                      | 0.4<br>0.2<br>0                                                                  | I<br>0.1 0.2 0.3 0.4 0.5                                                         | I<br>0.1 0.2 0.3 0.4 0.5                                                         | I<br>0.1 0.2 0.3 0.4 0.5                                                                   | 0.1 0.2 0.3 0.4 0.5                                                                                                                                  | 0.1 0.2 0.3 0.4 0.5                                                                                 | 0.1 0.2 0.3 0.4 0.5                                                                         | 0.1 0.2 0.3 0.4 0.5                                                                                                            | 0.1 0.2 0.3 0.4 0.5                                                                                                                                                                                               |

### **Background Studies: Local shielding**



#### **Background Studies: Local shielding**



### **Beamline Instrumentation**

- Beam line chicane:
  - Two chicane magnets will be added
- Beam line diagnostics
  - Use upgraded beam diagnostics
    from recently concluded g2p/gep experiments
    Low current BCM, BPM, raster and Harps





#### **Event Display**



#### **Tensor Charge**

- Unmeasured region <3-4%
  - Will constrain by our data
- Higher twist <5%

•

•

•

•

- Can be improved with comparison of EIC and our data
- Q2 evolution of transversity: <3%
  - EIC data can definitely help.
- PT dependence: <2-3%
  - Our data will put strong constrains
- Collins fragmentation 10% now (5% with future data and our data in terms of shape)
- NLO formalism + evolution on Collins fragmentation function (<3%)?
- Final determination better than 10%, current best educated guess ~7-15% level (can only determined by data)
  - Also will improved with additional data from EIC, e+e-, and DY data.
  - Currently 30-50% level, also violation of Soffer's bound?