Proposal PR12-12-011:

Measurements of A_{\parallel} and A_{\perp} to Extract G_{E}^{n} and G_{M}^{n} at $Q^{2} = 1 - 2.6$ (GeV/c)² from the Inclusive $\overrightarrow{^{3}\text{He}}(\overrightarrow{e},e')$ Reaction

Vincent Sulkosky

Massachusetts Institute of Technology

On Behalf of T. Averett (W&M), D. W. Higinbotham (JLab), B. E. Norum (UVa) for the PR12-12-011 Collaboration

PAC 39 Meeting June 21st, 2012

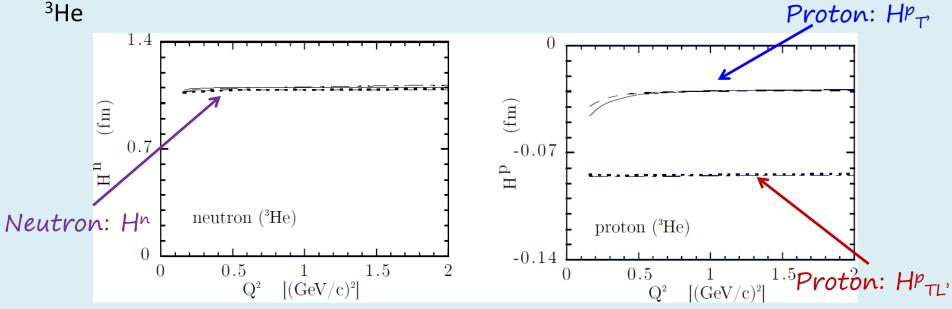
Motivation

- Neutron not understood to the same accuracy as the proton
 - No pure neutron target
 - ➤ Indirect measurements using appropriate targets: deuteron and/or ³He
- ➤ High precision measurement will help pin down theoretical treatments on the extraction of the neutron electromagnetic form factors from different nuclei (deuteron and ³He) and different reaction channels A(e,e') and A(e,e'n)
- ➤ Theoretical models and parameterizations begin to diverge for Q² > 1 (GeV/c)²
- Compared to the other form factors the precision on G_Eⁿ is poorly constrained over the measured Q² range (only three data points have a precision better than 10%)

Extraction of G_E^n at $Q^2 = 0.98$ (GeV/c)² by Measurements of $\frac{1}{3}$ He(e, e')

- $ightharpoonup G_E^n$ was extracted for the first time by inclusive polarized measurements from 3 He at $Q^2 = 0.98$ (GeV/c) 2
- > Form the ratio of asymmetries for longitudinal and transverse target polarization; use the well known proton electromagnetic and the neutron magnetic form factors
- > Proton and neutron contributions calculated in PWIA
- This technique agrees with previous measurements; uncertainty ~19% (limited by statistics in only a few shifts of data)
- Note: M. Sargsian and G. Salme` are ready to support full model extractions of precision data

³He Inclusive Response Functions near the Quasi-elastic Peak in PWIA


Transverse-

$$R^{^{3}He}_{TL'} = -\sqrt{2} \left[2G_{E}^{p} G_{M}^{p} H^{p}_{TL'} + G_{E}^{n} G_{M}^{n} H^{n}_{TL'} \right]$$

longitudinal:

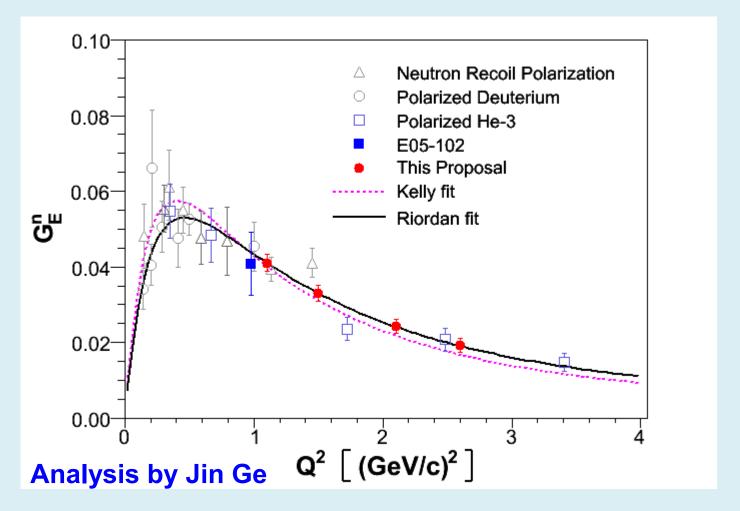
Transverse:
$$R^{^{3}He}_{T'} = \frac{Q^{^{2}}}{2aM} [2(G_{M}^{p})^{2}H^{p}_{T'} + (G_{M}^{n})^{2}H^{n}_{T'}]$$

where H's are calculated by momentum distribution and nucleon polarization in

A. Kievsky, E. Pace, G. Salme' and M. Viviani, PRC 56 (1997) 64

Ratio of Asymmetries as a Function of Form Factors

$$\frac{A_{TL'}}{A_{T'}} = \frac{v_{TL'}(-\sqrt{2}[2G_E^{\ p}G_M^{\ p}H^p_{TL'} + G_E^{\ n}G_M^{\ n}H^n_{TL'}])}{v_{T'}(\frac{Q^2}{2qM}[2(G_M^{\ p})^2H^p_{T'} + (G_M^{\ n})^2H^n_{T'}])}$$

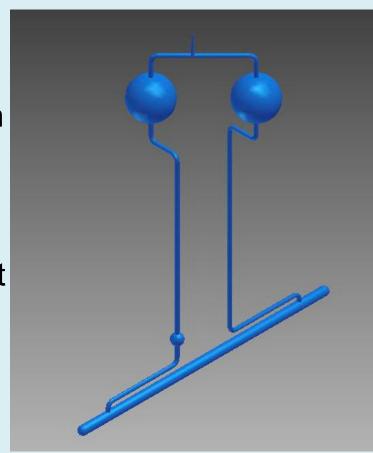

By measuring A_{TL}/A_{T} and using G_{E}^{p} , G_{M}^{n} , and G_{M}^{n} as known parameters can one extract G_{E}^{n}

G_E^n from 3 He(e,e') at Q^2 =0.98 (GeV/c) 2

with a few shifts of data

$$G_E^n/G_D = 0.234 \pm 0.044 \text{ (stat)} \pm 0.011 \text{ (syst)}$$

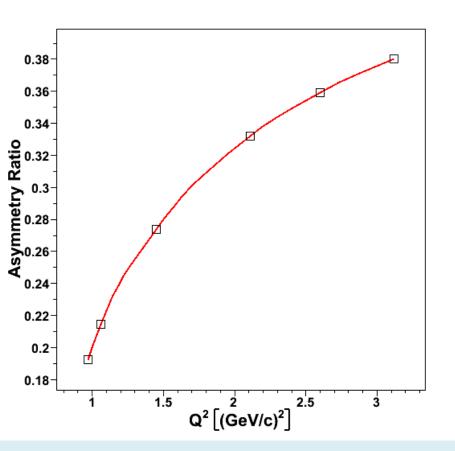
 $G_E^n = 0.0414 \pm 0.0077 \text{ (stat)} \pm 0.0019 \text{ (syst)}$

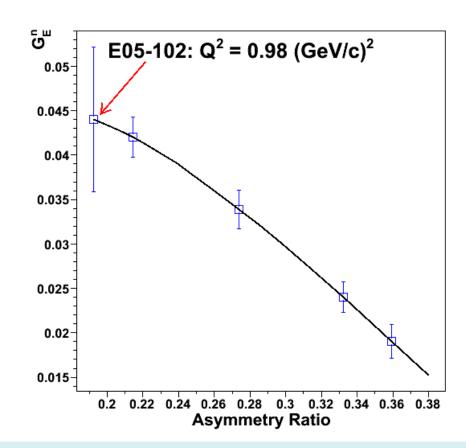


Overview of Experiment

$$^{3}\overrightarrow{\text{He}} + \overrightarrow{e} \rightarrow e' + X$$

- Measure inclusive double-polarized
 ³He asymmetries
- Use the Hall C Super High Momentum Spectrometer (SHMS) to detect the scattered electrons at 6 and 8.5 degrees with 11 GeV beam
- ▶ Use the upgraded polarized ³He target planned for the A₁ⁿ (E12-06-110) and d₂ⁿ (E12-06-121) experiments
- Considering to detect the knock-out proton in the High Momentum Spectrometer (HMS)

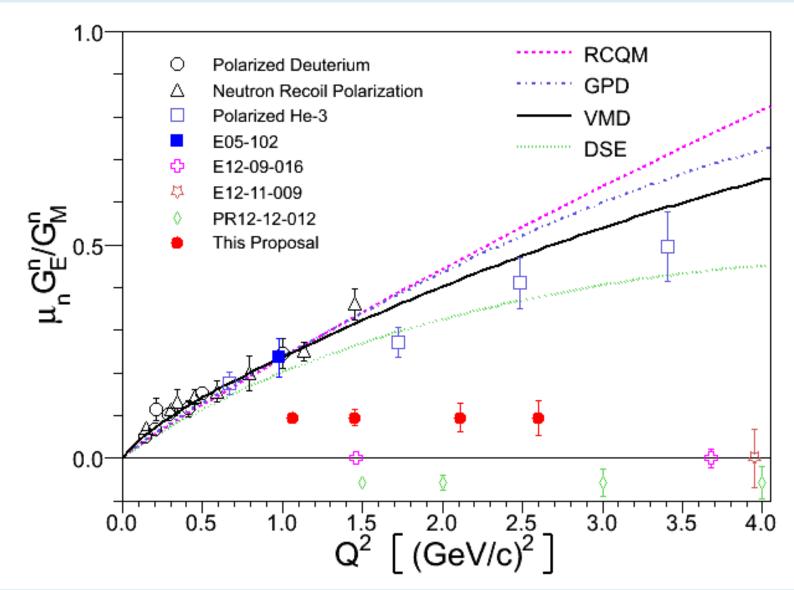




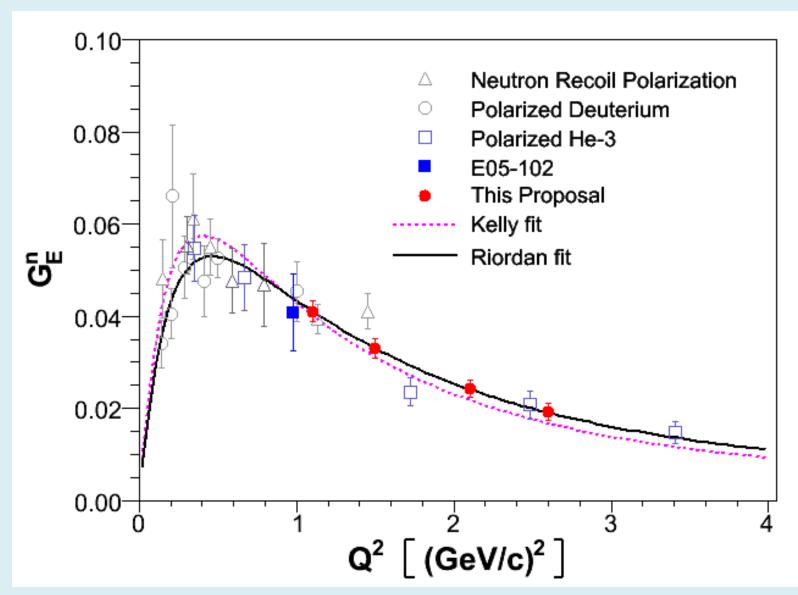
Form Factor Sensitivity to Asymmetry Ratio

$$A_{ratio} = \frac{A_{TL'}}{A_{T'}}$$

Kinematics and Rates

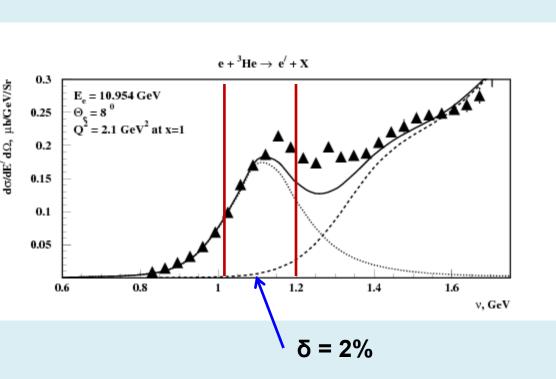

E_0	E'	$\theta_{ m SHMS}$	Range of θ_{lab}	Q^2	e ⁻ rate	t_{\parallel}	${ m t}_{\perp}$	ΔA_{\parallel}	ΔA_{\perp}
[GeV]	[GeV]	[deg]	$[\deg]$	$(\mathrm{GeV/c})^2$	[kHz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$
11.0	10.437	6	5 - 6	1.057					
11.0	10.229	6	6 - 7	1.446	7.70	48	6	0.8	2.2
11.0	9.874	8.5	7.5 - 8.5	2.114					
11.0	9.612	8.5	8.5 - 9.5	2.604	0.37	240	36	1.6	4.1

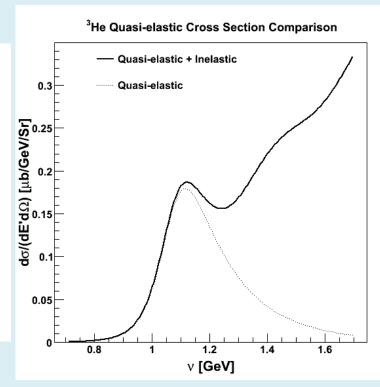
- Utilize full capabilities of SHMS (11 GeV forward angle)
 - \triangleright Take advantage of the **rate boost from** σ_{Mott}
 - > Helps minimize inelastic backgrounds
- > Estimated quasi-elastic counting rates for a 42-cm long target with 60% target polarization, 80% beam polarization at 60 μA
- > Based on J. Arrington parameterization for G_E^p and G_M^p and CLAS data for G_M^n


Expected Results

Expected Results

Concerns Raised by PAC 39 and TAC


- Polarized Inelastic background contamination
- Final State Interactions (FSI) and Meson Exchange Currents (MEC)
- Relativistic Effects



Inelastic Contamination

- Used the cross section models from Misak Sargsian and Peter Bosted (http://arxiv.org/abs/1203.2262)
- > The two models agree well with each other at the top of the quasi-elastic peak with less than a 0.5% absolute difference

Inelastic Contamination

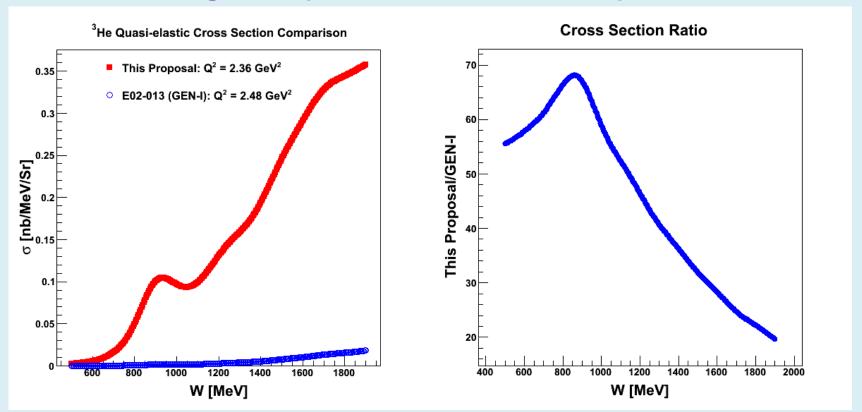
- Used the cross section models from Misak Sargsian and Peter Bosted (http://arxiv.org/abs/1203.2262)
- > The two models agree well with each other at the top of the quasi-elastic peak with less than a 0.5% absolute difference
- By varying the momentum cut, the effect of the contamination can be studied with the data

Q^2 $(\text{GeV/c})^2$	Contamination $x = 1$ [%]	Contamination (dp = 2%) [%]	Contamination (dp = 1.5%) [%]
1.06	0.3	0.7	0.4
1.45	1.5	3.0	1.7
2.11	4.6	8.8	4.9
2.60	7.8	11.9	6.8

Inelastic Contamination on Asymmetry

$$A_{QE} = \frac{(A_{raw} - f_c \cdot A_{in})}{1 - f_c}$$

- $> f_c$ is the amount of contamination under the quasi-elastic peak
- $ightharpoonup A_{\it QE}$, $A_{\it raw}$, and $A_{\it in}$ are the quasi-elastic, measured and inelastic asymmetries
- ▶ Using the determined contamination numbers from the models and the measured asymmetries from experiments E01-012 and E05-102 with the assumption that $A_{in} = A_{\Delta}$, the effect on the asymmetry was calculated


Q² (GeV/c)²	A _{raw}	A _{QE}	Difference [%]
1.0	-0.1656	-0.1699	2.5
2.6	-0.2325	-0.2258	3.0

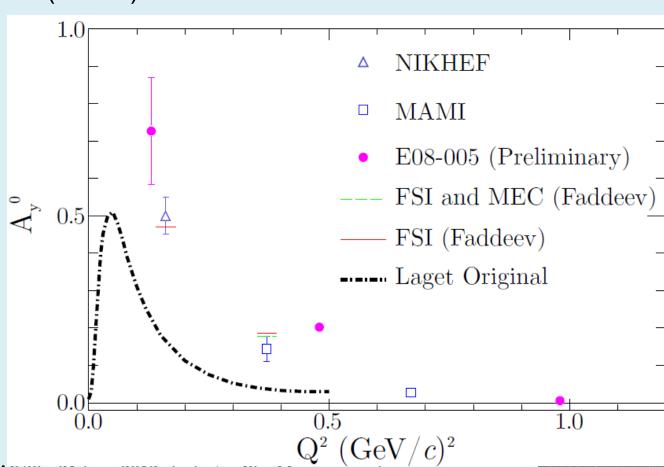
Comparison of Cross Sections at $Q^2 \sim 2.5 \text{ GeV}^2$

The quasi-elastic cross section is about a factor of 70x larger at forward angle compared to the GEN-1 data point.

Cross section model from P. Bosted

- The proposed measurement benefits from the SHMS resolutions compared to BigBite
- We will also measure the inelastic contribution within the SHMS momentum acceptance, allowing us to carefully choose our cuts for each Q² point

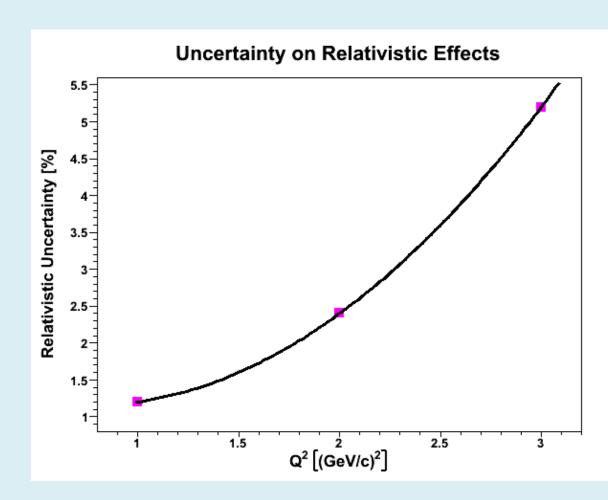
FSI and MEC vs. Q²


Experiment E08-005: recent ³He[↑](e,e'n) single spin asymmetry (A_y) measurements, target polarized normal to scattering plane

A_y vanishes in PWIA, and measurements of this asymmetry are a good check of FSI and MEC contributions

> Small asymmetry near 1 (GeV/c)² is indicative that these mechanisms have

become negligible


Analysis by E. Long

Relativistic Effects

- Misak Sargsian compared his model calculation using the Virtual Nucleon and Light Cone approximations
- He provided the difference in these two methods as the uncertainty due to relativistic effects
- Giovanni Salme` is constructing a Poincare` invariant approach for the relativistic treatment in his calculation

Relativistic Effects

- Misak Sargsian compared his model calculation using the Virtual Nucleon and Light Cone approximations
- He provided the difference in these two methods as the uncertainty due to relativistic effects
- Giovanni Salme` is constructing a Poincare` invariant approach for the relativistic treatment in his calculation

$Q^2 ({\rm GeV/c})^2$	Total Model Uncertainty (2012) [%]
1.06	2.2
1.45	2.4
2.11	3.2
2.60	4.3

Estimated Systematic Uncertainties

Q^2	G_E^p	G_M^p	G_M^n	Model	Experimental	Inelastics	$(\sigma_{ m syst})$	(σ_{stat})	$(\sigma_{\rm total})$
$({ m GeV/c})^2$	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
1.057	1.4	1	0.1	2.2	2.3	2.0	4.1	3.5	5.4
1.446	1.4	0.8	0.5	2.4	2.3	2.0	4.2	4.5	6.4
2.114	1.4	0.6	0.9	3.2	2.3	3.0	5.2	5.0	7.2
2.604	1.4	0.5	1.3	4.3	2.3	3.0	6.0	8.0	10.0

- Relative systematic uncertainties from nucleon form factors, model (updated numbers from M. Sargsian), experimental (beam pol. 1.5%, target pol. 1%, radiative corrections 1%), and the inelastic contamination
- ▶ GEp: 1% at $Q^2 = 1$ (GeV/c)² with a linear increase up to 3% at 3 (GeV/c)²
- > GMp: 1% over the planned Q² range
- GMn: 2% to 2.4% from the high precision Hall B data (J. Lachniet et al.)

Beam Time Request

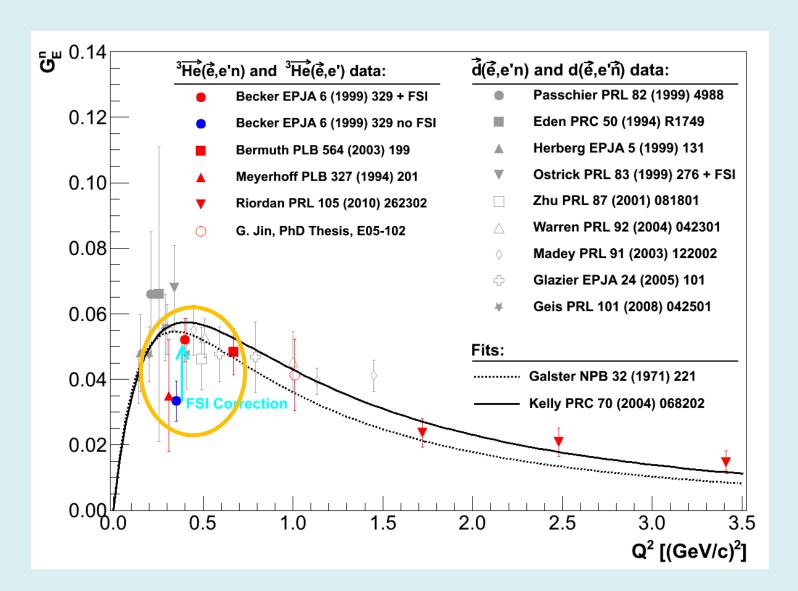
	Time (Hours)	Time (Days)
Long. Pol. ³ He at 11 GeV, 6 degs	48	2
Trans. Pol. ³ He at 11 GeV, 6 degs	6	0.25
Long. Pol. ³ He at 11 GeV, 8.5 degs	240	10
Trans. Pol. ³ He at 11 GeV, 8.5 degs	36	1.5
Dilution, calibrations	24	1
Total Time Requested	336 + 24	14 + 1

We request a total of 15 days of beam time

Summary

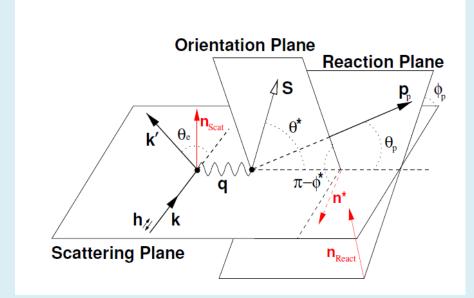
- Experiment is a straight forward 3 He(e,e') measurement at Q^{2} from 1 to 2.6 (GeV/c) 2
- \triangleright Already have theoretical support from G. Salme` and M. Sargsian to make G_E^n extractions from the data
- \triangleright Makes use of the Hall C investments for the A_1^n and d_2^n experiments without requiring additional equipment
- > We request 15 days of beam

PR12-12-011 Collaboration


- D. S. Armstrong, T. Averett (Spokesperson), M. Cummings, W. Deconinck, H. Yao **College of William and Mary**
- K. Allada, A. Camsonne, O. Hansen, D. W. Higinbotham (Spokesperson), B. Sawatzky, P. Solvignon **Thomas Jefferson National Accelerator Facility**
- C. Hanretty, B. E. Norum (Spokesperson) University of Virginia
- W. Bertozzi, S. Gilad, A. Kelleher, S. Kowalski, V. Sulkosky (Spokesperson)

 Massachusetts Institute of Technology
- B. Anderson, E. Long (Kent State University)
- M. Mihovilovič, S Širca (Jožef Stefan Institute and University of Ljubljana)
- T. Badman, S. K. Phillips, K. Slifer, R. Zielinski (University of New Hampshire)
- L. El Fassi, R. Gilman, K. E. Myers, A. Tadepalli, Y. Zhang (Rutgers, The State University of New Jersey)
- P. Markowitz (Florida International University)
- J. Huang (Los Alamos National Lab)
- W. Tireman (Northern Michigan University)
- T. Holmstrom (Longwood University)
- K. Aniol (University of Califorina)

Motivation



Helicity Asymmetry in Electron Scattering

$$A = -\frac{\sin \theta * \cos \phi * v_{TL'}R^{^{3}He}_{TL'} + \cos \theta * v_{T'}R^{^{3}He}_{T'}}{v_{L}R^{^{3}He}_{L} + v_{T}R^{^{3}He}_{T}}$$

where R's are response functions and v's are kinematics factors

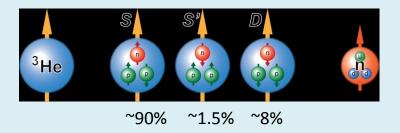
T. D. Donnelly and A. S. Raskin, Ann. Phys 169, 247 (1986)

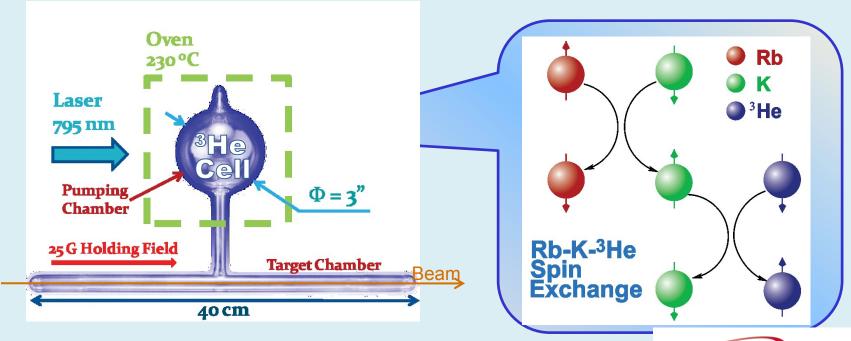
Ratio of Asymmetries

when $\theta^* = 0$, transverse asymmetry $A_{T'} = -\frac{v_{T'}R^{^3He}_{T'}}{v_LR^{^3He}_L + v_TR^{^3He}_T}$

when $\theta^* = \pi/2$ and $\phi^* = 0$, transverse - longitudinal asymmetry

$$A_{TL'} = -\frac{v_{TL'}R^{^{3}He}_{TL'}}{v_{L}R^{^{3}He}_{L} + v_{T}R^{^{3}He}_{T}}$$

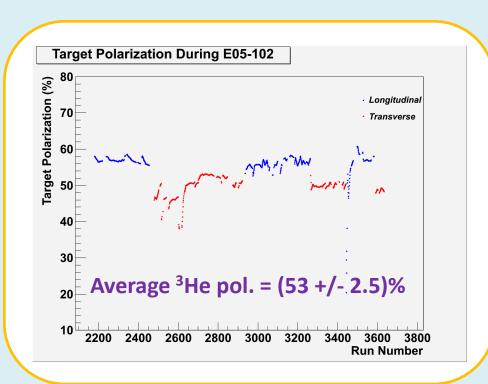

$$\Rightarrow \frac{A_{TL'}}{A_{T'}} = \frac{v_{TL'}R^{^{3}He}_{TL'}}{v_{T'}R^{^{3}He}_{T'}}$$

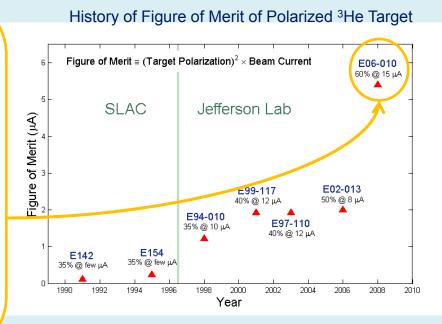


Polarized ³He Target

- Improved figure of merit
 - Rb+K hybrid mixture cell
 - Narrow bandwidth lasers

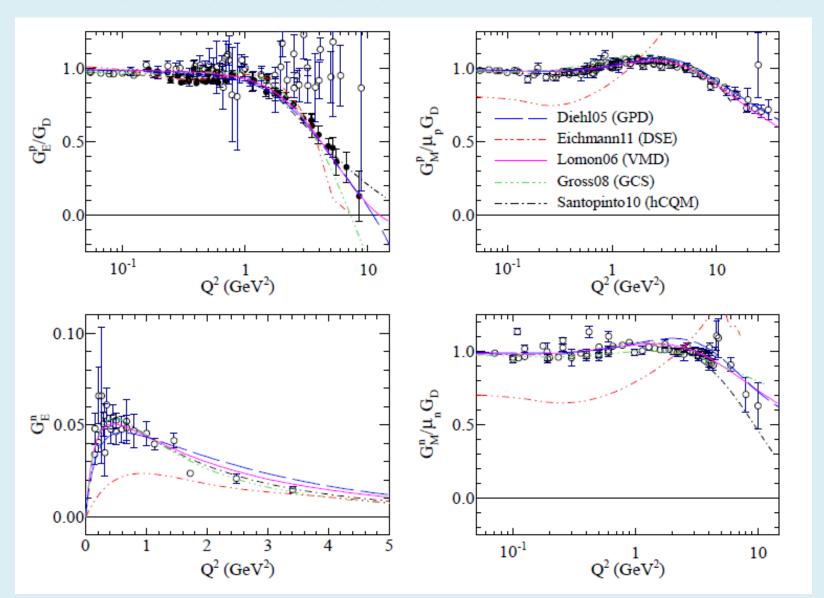
Compact size: No cryogenic support needed





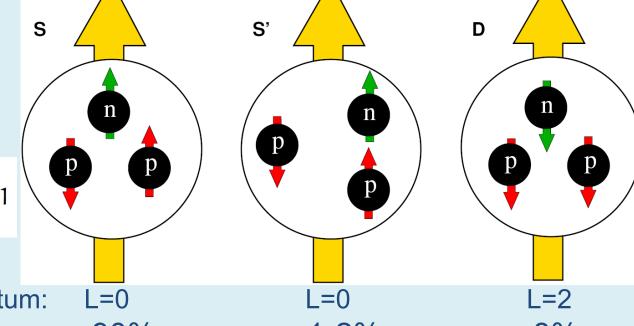
6-GeV Performance of ³He Target

- Luminosity: $L(n) = 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$
- Achieved record high steady ~ 60% polarization with a beam current up to 15 μA


Planned ³He Target for 12-GeV Experiments

- ➤ Upgrade takes advantage improvements of hybrid spin exchange optical pumping and spectrally narrowed lasers
- This proposal takes advantage of the already planned factor of 8 improvement in polarized luminosity discussed in the and the Hall C approved A₁ⁿ experiment
 - > "Dual transfer tube" design for convection mixing of polarized gas
 - ➤ Additional diagnostics for direct measurement of ³He and alkali-vapor polarizations
- > Goal: 60% target polarization with a beam current of 60 μA on a 60-cm long target

Current Status of EM Form Factors



³He spin structure

- Spin-1/2 Particle, 3 spin-1/2 Nucleons (Proton and Neutron)
- Protons are in spin-singlet state. ³He spin is dominated by spin of n. Therefore ³He can be used as an effective n target
- > S' mixed symmetry, (spin-isospin)-space correlations

Effective Polarized Neutron **Target**

$$\frac{\mu_{^{3}\text{He}}}{\mu_{n}} = \frac{-2.131}{-1.913} \approx 1$$

Angular Momentum:

