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@ Setup and Experiment

@ Results and Uncertainties

Seamus Riordan CREX 3/20



Theoretical Overview

@ Both proton and neutron structure is important to
understanding the strong nuclear force

@ Calculations are difficult due to non-pQCD regime
complicated by many-body physics
@ Interesting for
e Fundamental nuclear structure
e Isospin dependence and nuclear symmetry energy
e Dense nuclear matter and neutron stars
@ Proton radius is relatively easy - electromagnetic probes
@ Neutron radius is difficult

o Weakly couples to electroweak probes
e Hadronic probes have considerable uncertainty
o Theory has range of R, — R, for various nuclei
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Importance of Neutron Densities

@ Constraints on neutron EOS

E vs. 208 :
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B. Alex Brown, PRL 85, 5296 (2000)

@ Slope of EOS can be used to constrain potential models

o Correlated to p dependence of symmetry energy
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Neutron Stars

A. W. Steiner et al.,

@ Neutron star structure is also
Phys Rep 411, 325 (2005)

better understood with
measurements on R, [y Potential

03l ]
| e a Field-theoretical 1

o Larger R, correlates with larger i .
pressure 023 " y

@ X-ray observations from neutron g v
stars have predictions go.z; %-‘ .
0Rpp = 0.15£0.02 fm i -~

@ Structure can influence properties oist '_. ]
such as gravity waves Lo

0.5‘ ‘ l] ‘1.5}
PB(n=0A1 fm”™) (MeV/fm’)
o Additionally, symmetry energy governs proton fraction
e Direct Urca cooling depends on processes
n — pte +v
e +p — n+v
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Three Neutron Forces

P vs p for
uniform neutron matter

@ Microscopic calculations for 031 fm -+
48Ca are just now becoming T | |
available

@ Indirect calculations show a 200 Ry-Ry=0.23 fmA

1% difference in radius is §

induced by three-neutron 2 15

forces =

= 1.0~

@ CREX would help test these =

assumptions and provide 05 i,

. nn forces
constraint only
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Accessing Neutron Radii in Nuclei

Qe Prolas Electroweak Probes

o Elastic pN, BN, nN, 7N o Parity violating electron
' ' ' scatterin
o Alpha scattering E
e GDR/dipole polarizability

@ Antiproton scattering

@ Atomic parity violation

@ “Clean” measurements,
fewer systematics
Have uncertainty in extraction

. . Technically challenging due to
due to strong force interactions

) small weak force interactions

®
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Parity Violating Electron Scattering

@ e~ also exchange Z, which is parity violating
@ Primarily couples to neutron:
QPO o 1 — 4sin? fyy &~ 0.076, QRSN o 1

@ Detectable in parity violating asymmetry of electrons with
different helicity

@ In Born approximation, Q? < M2, from ~ — Z interference:
+ _ 4= G 2 F 2
APV: U+ g = FQ 1—4Sin2ew— n(Q2)
ot +o0~  4ran/2 Fp(Q%)
o For fixed target exp., typical Apy ~ 1077 —10~*
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CREX vs. PREX

e PREX Measurement on 2%8Pb published in December gave
R, — R, = 0.337015 fm
o PREX-II approved to reduce error bars to 0.06 fm

‘ Neutron Skin R_n -R_p vs Mass Number A |
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CREX vs. PREX

o
2
\

@ PREx is more direct measurement
for dense nuclear matter

@ Models show correlation between
predictions of skin

o 1% on 2%8Pb is about 1% on “8Ca
o Uncorrelated uncertainties give
advanced precision

L [¥Ca] (fm)
=

| T T A A S '
0.12 0.16 020 024 028
Ioin [2%PD] (fm)
@ %8Ca can have microscopic calculations performed
@ Directly tests assumptions/parameters based into models

o Different Z, allows more reliable extrapolation between nuclei
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Typical Experiment

How to do a Parity
FX ne ri m e n t (integrating method)

Rapid, Random Helicity Flips Measure flux F
for each window

specialized
optics
laser

k-F

/l’li\ window panr E( +E,

uisd J

electrons
Accelerator

rapid, random, helicity flipping

O(A)
Signal Average N Windows Pairs: A +/- N
Flux Integration Technique: Example . HAPPEX AN windows
HAPPEX: 2 MH; Calorimeter Raw Window Pair Asymmetry
PREX: 500 MHz 1% 23 Million ’11 o= 3.8x10°
Window Pafrsr
Calorimeter 10 |
S WE‘L_l ~ 90 microamps | [ 0.8 ppm
e |
] s eopper phototube integrator 1‘0.2 ol Lk 5 u‘,] I v

[0 quarts

No non-gaussian tails to +/- B¢
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Optimize Kinematics

e Compete against falling rates with higher asymmetry as Q?

grows
@ Need to optimize to sensitivity of A to marginal changes in
radius
I T p——
0.1: l
0.09F \ /
0.08F \ /
0.07F /
_0.08
Eo05E /
gk
0.04:
T
0.02F -- Ca48
0.01F —— Ca48 - w/ dsys = 1.8%
i

0 [deg]

@ For 2.2 GeV beam, 6 =~ 4°
® 0R, ~ 0.03 fm with 30 days beamtime and anticipated

systematics
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Septum Magnet

Septum Magnet Requirements

@ HRS only go to 12.5°, require
septum to reach 4°

o Sufficient hardware resolution
must be maintained, need pure
dipole

@ Need to reach 1350 A/cm?
with 2-coil configuration

@ Require new power supply,
LCW pumps
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HRS and Quartz Detectors

@ HRS has hardware resolution 1073, use to separate inelastic
states

‘ Elastic/inelastic ““Ca Focal Plane x Distribution, 2.2 GeV, Anticipated HRS Resolution

108 Cont. = 0.9%

|

10°

104?
10°
E — Elastic
107 L — Inelastic
S I 1 IR A
0.1 -0.08 -0.06 -0.04 0 002 004 006

@ Place quartz Cerenkov detectors to minimize inelastics
@ Several states, but kept to < 1%. Asymmetries calculable to
some level and subtracted
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C-REX Target 9
Septum-L T Septum-R o1 g/Cm , 5% radlator
CootngLes Bl (much less than PREX!)
21cm o 1emwal
Nominal electron  trajectory’ Aluminum exit window [~ OXidlZeS When eXposed tO air, mUSt

remain isolated

Drawn approxir

e End windows (Al or steel)
caag| Target contribute background, must
remove from acceptance

29 cm

@ Collimators degrade e~ energy by
o 20 MeV

Cooling Lines

25cm

@ Prototype and test with #°Ca
I‘\A.mmmemmw.m target, add in to ladder during
Beam
PREx-I
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Radiation Impact

10*
N — — e,PREx |
10 — e,PREx I
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e CREX is at higher beam energy (less forward peaked), target
is half rad. thickness

@ Radiation simulations show order of magnitude lower than
PREX-II

@ Further simulations will be performed to optimize any
shielding
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Beam Request and Proposed Data

Energy 2.2 GeV Production 30 days
Current 100 pnA Commissioning 5 days
Polarization Full, ~ 85% Pol, calib., At 5 days

e Require full longitudinal and (vertically) transverse beam

Measured Asymmetry (pe A) 2 ppm
Scattering Angle 4°
Detected Rate (each HRS) 80 MHz
Statistical Uncertainty of Apy | 2.8%
Systematic Uncertainty of Apy | 1.8%
Statistical Uncertainty of At 0.4 ppm
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Systematic Uncertainties

Charge Normalization | 0.1%

Beam Asymmetries 0.3% @ Polarimetry errors could
Detector Non-linearity | 1.0% improve with planned advances
Transverse 0.1% for Moller and SolLID
Polarization 1.2% @ CREX more sensitive to Q2
Inelastic Contribution | 0.5% uncertainty than PREX, angular
Effective Q2 0.8% resolution demonstrated using
Total 1.8% elastic ep
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Conclusion

@ Neutron radius densities are challenging to measure, but
provide important information for nuclear structure and
astrophysics

@ Parity-violating electron scattering provides a clean method to
measure such a distribution

@ The CREX measurement aims to measure dR,, to a precision
of 0.03 fm with 40 days
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BACKUP
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Transverse Asymmetries

@ Vertically transverse beam asymmetries sensitive to two
photon effects

@ Asymmetries are highly suppressed, few ppm for
Q@2 ~ 1072 GeV?

'H, E=3.026 GeV, 6 = 6°

“C,E=1063GeV,0=5 ©
1 1 1 8 1 1 1 1 1
0
s ‘He, E=2.75GeV,08=6° | 0 o
.10:— 2
15 LG |
20 F 6
25 F | BF=Pb E=1063Gev,0=5°
[Ty AR U RN R (NPT U S N T B
0 2 4 6 8 0 1 2 3 4 5 6
6 (deg) 6 (deg)

@ Very latest calculations: agreement with measurements on low
Z nuclei
e 208pPp is significantly off - Coulomb distortions?
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Optimize Kinematics

e Compete against falling rates with higher asymmetry as Q?

grows
@ Need to optimize to sensitivity of A to marginal changes in
radius
Rt o e, A ra 32 GeY A VRS S PREK e [ GAAor g v, Gorrl Al &~ 22 Gov, S PREX e
10 E
0.08F
10° o.o7§ \
oo \
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S107g o \
10°E 002
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105% \ ° f \
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2
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FOM = R x A% x _dA/A
dR,/ R
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Parity Quality Beam

@ Requirements less strict than PREx (or any 12 GeV parity
experiment)
o Higher Q2 (x2), larger asymmetry (x4)
o Cross section changes x6 more slowly with angle

Asymmetry vs. BPM Helicity Difference TA=9.973 +/- 10,626 1, dof=80 ;= 0.97, P=054

diff_bPMI2X (14w INWien L A=29.857 +/- 11.230 nm, d L1'= 118, P=0.14
1500
Tomf VG A=37 r.287 . etz '= 107 pe0 18
Tanol
t F } Tl h I
5§ of £ | | ;
N ot il 1ty bl
7500 VT T J T T I T
< C %
1000}~ 0.05- {
e k . . . . .
-200 -150  -100 -50 0 50 100 150 2
8P, i) 15 20 25 30 35 40

@ Use double-Wien, HWP insertions to control systematics
@ PREX demonstrated corrections < 40 ppb, dx < 4 nm

@ Polarization monitored to 1% with Moller and Compton
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HRS and Quartz Detectors

@ Quartz Cerenkov detectors will be used as in PREx
@ Integrate signal from PMT over helicity windows
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£ Xming X [==]=]
JSBY Ecit view Options Tools Help
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Nuclear Symmetry Energy

@ Nuclear symmetry energy governs energy of systems from
symmetric nuclear matter to pure neutron matter
Bethe-Weizsacker SEMF:

Z(Z-1) (N — Z)?

— - 2/3 _ 0 2
Eb a\/A asA ac A1/3 aa A

+ (A, 2)
@ Neutron EOS strongly governed by symmetry energy

@ R, provides constraints and has empirical correlations with
density dependence on the symmetry energy
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