Superconducting Magnet Development for µ→e Conversion Experiments

NuFACT 2012 July 23-28, 2012

> Michael Lamm Fermilab

Outline

- Muon Conversion Experiments
- Magnet Elements
- Issues for Future Experiments
- Summary

Thanks to Makoto Yoshida (KEK) for slides on COMET magnets Other slides from "Radiation Effects in Superconducting Magnet Materials" (RESMM'12) February 2012 see: https://indico.fnal.gov/conferenceDisplay.py?confld=4982

Muon Conversion Experiments

μ N→e⁻ N experiments date back to the 1950's, making incremental improvements on observation limits: Summary of "modern" experiments:

- Past (1990's) 10⁻¹³ sensitivity
 - SINDRUM II
- The Present (2010's) 10⁻¹⁷ sensitivity
 - COMET
 - MU2e
- The Future (2020's ?) ~10⁻¹⁹ sensitivity
 - PRISM
 - Project X-ERA at Fermilab

Magnetic Elements

Modern muon-electron conversion experiments all work on a similar principle:

- 1) Generate large number of "stop-able" muons
- 2) A mono-energetic 104 MeV conversion electron is created from the coherent process: μ N \rightarrow e $^-$ N

They utilizes three Basic Magnetic Elements:

- Capture Solenoid to collect pion and muon secondaries from primary target
 - Large aperture, highest possible fields
 - Heat and radiation from interaction secondaries
- Muon Transport
 - Maximum transports efficiency
 - Eliminate background
 - o Eliminate Line of Sight for neutral background
 - o Dispersion and collimation for momentum selection
 - Avoid trapped particles. Keep muons "in time"
- Muon Stopping Target and Electron Spectrometer
 - Efficient muon collection
 - Electron Momentum measurement with minimal background

Example: Mu2e

Example: COMET apparatus

- A series of long solenoids from end to end
 - pion capture & decay
 - muon transport
 - electron focus
 - spectrometer
 - detector

COMET Superconducting Magnet System

Mu2e Solenoids and Supporting Infrastructure

- Power Supply/Quench Protection
- Cryoplant

- Field Mapping
- Ancillary Equipment
- Installation and commissioning

Mu2e Production Solenoid Concept

4.6T→ 2.5 T Axial Gradient

Features:

- 1.6 m aperture, 4 m long
- Operating current ~9kA
- 3 coils "3-2-2" layers
- High strength aluminum stabilized NbTi superconductor (similar to ATLAS Central Solenoid)
- Aluminum outer support shells
- Thermal Siphon Cooling
- Mechanically supports
 Heat and Radiation Shield

Comet Capture Solenoid Layout

- Superconducting solenoid magnets with Al-stabilized conductor
- High field 5T to capture π⁻
- Large bore 1300mm
- High radiation env.
- Decreasing field
- to focus trapped pions
- Thick radiation shielding 450mm
- Proton beam injection 10° tilted
- Simple mandrel

	CS0	CS1	MS1	MS2
Length (mm)	175	1350	1800	380
Diameter (mm)	662	662	662	662
Layer	9	9	5	8
Thickness (mm)	144	144	80	128
Current density (A/mm²)	35	35	35	35
Maximum field (T)		5.7	4.0	3.9
Hoop stress (MPa)		59	51	30

Mu2e Transport Solenoid

•TS1,TS3,TS5: Straight sections with axial gradient

•TS2/TS4: approximate toroidal field

•Accomplished by 52 solenoid rings of different amp-turns

•Two cryostats: TSu, TSd

•TS3: → TS3u, TS3d.

Wider coils to

compensate for gap

•Coil fabrication similar

to MRI coils

Al-stabilized superconductor

- NbTi Rutherford cable with aluminum stabilizer
- "TRANSPARENT" to radiation
 - Less nuclear heating

- Doped cold worked aluminum
 - High RRR (>500) and
 - High offset yield point at 4K > 85 MPa

30 mm x 5.5 mm

COMET design value for Capture Solenoid

Al/Cu/SC: 7.3/0.9/1

14 SC strands: 1.15mm dia.

Mu2e design value for PS

Al/Cu/SC: 6.0/0.9/1

36 SC strands: 1.30 mm dia.

Ongoing R&D

PS demonstration coil at Toshiba

- 4-layer 8 turns using prototype cable
- Al-Al internal joint
- To be tested at Fermilab in 2013

Ongoing R&D

Part of the US Japan Collaboration

Splice Tests

- Chemically removed Al stabilizer
- NbTi-NbTi splice joint

M. Yoshida et al, ICMC2011

Radiation Studies at KUR

Fully recovered with room temp. anneal

Mu2e will have to warm up ~1/year to repair aluminum stabilizer

Issues for Future Experiments

- Higher intensity muon beams will be required to increase limit sensitivity/discovery.
- More Demands on the Pion Capture Solenoid
 - Higher intensity primary proton beams
 - Increase capture efficiency with larger aperture, higher field → higher field on superconductor
 - Larger flux of secondaries→ higher heat load + high radiation on coil (superconductor, stabilizer and insulation)

HTS Needed for High Fields

Mu2e and Comet Capture Solenoids are near the limit in several areas

- Peak field on conductor is >5.5 T. Limited SC phase space especially since experiment demands large temperature and thermal margin for quench-free operation
 - Near the limit of what is practical with NbTi
 - Nb3Sn or HTS conductor is a possible upgrade path
 - Brittle conductor
 - Generally Nb3Sn solenoids are possible because of simpler mechanical forces, may not be true in this case.
- Radiation limits on stabilizer and insulation will demand more effective heat shield in bore of magnet
 - Tungsten (\$\$\$\$) replaces copper
 - Frequent room temperature anneals to repair stabilizer
 - Consider radiation resistant epoxies (cyanide ester)
 - HTS is purported to have good radiation qualities

Future Capture Solenoids may resemble muon collider concepts

5-T copper magnet insert; 15-T Nb $_3$ Sn coil + 5-T NbTi outsert. Desirable to replace the copper magnet by a 20-T HTC insert.

Summary

- The conceptual design for the Mu2e and COMET solenoids has been completed
 - Both use indirectly cooled NbTi conductor stabilized with Aluminum
 - Designs are appropriate for sensitivity goals
- Peak Fields and dynamic heating are near the limit of what can be practically achieved with NbTi.
- Future experiments will likely require magnets built with Nb3Sn, HTS and radiation hardened insulators.