Constraining systematic errors using the T2K near detector

Kendall Mahn

For the T2K collaboration

The Tokai-to-Kamioka (T2K) experiment

T2K sends a ~1 GeV ν_{μ} beam across Japan to study neutrino oscillations

- Measure V_{μ} disappearance ($\Delta m_{32}^2, \theta_{23}$)
 - Deficit of v_{μ} rate and distortion of v_{μ} energy spectrum
- Measure v_e appearance (θ_{13})
 - Excess of v_e rate over background
 - Subleading terms depend on mass hierarchy, δ_{CP}
- Precision measurements depend upon understanding of systematic errors
 Far detector:

Super-Kamiokande located near Kamioka

Beam source and near detectors: J-PARC accelerator complex located in Tokai-mura

 $P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4 E}\right)$

K Mahn, NuFACT

Neutrino interactions at T2K

Most interactions are Charged Current Quasi Elastic

- Neutrino flavor determined from flavor of outgoing lepton i.e. e for ν_e, μ for ν_μ
- Llwellyn Smith base model, with Smith-Moniz relativistic Fermi Gas representation of nucleus

Additional interactions important for analysis are $CC\pi$ and $NC\pi$ (single pion production)

Rein-Seghal resonance model

Off-axis near detectors: ND280

- Suite of near detectors sit within UA1 (B=0.2T, 850 tons) magnet
- Measure unoscillated CC ν_{μ} rate in Tracker:
 - Neutrinos interact on FGDs (carbon target)
 - Measure lepton angle, momentum and flavor with TPCs
 - Separate selection into CCQE-like (CCQE) and all other CC (CCnQE)
 - CC v_e rates also measured in POD, Tracker

Off-axis near detectors: ND280 (ND)

- Suite of near detectors sit within UA1 (B=0.2T, 850 tons) magnet
- Measure unoscillated CC ν_{μ} rate in Tracker:
 - Neutrinos interact on FGDs (carbon target)
 - Measure lepton angle, momentum and flavor with TPCs
 - Separate selection into CCQE-like (CCQE) and all other CC (CCnQE)
 - CC v_e rates also measured in POD, Tracker

Far detector: Super-Kamiokande (SK)

- 22.5kton fiducial mass Cherenkov detector (water target)
- 11,129 inner region PMTs
- 1885 outer veto region PMTs
- Select v_e events from ring shape and topology

 v_e appearance analysis

Signal: CC ν_e ν_μ to ν_e oscillation

Background: CC v_e Irreducible beam v_e

Background: NC ν_{μ} Mimics CC ν_{e}

Oscillation analysis strategy

Neutrino flux prediction

Off-axis (narrow band) neutrino beam FLUKA/Geant3 beam simulation

Unoscillated flux at SK:

- v_{μ} from π^+ , K decay
- ~1% v_e from μ , K decay

Prediction and uncertainties determined by external or in-situ measurements

π, K production from NA61 experiment
 Phys.Rev.C 84, 034604 (2011)
 Phys.Rev.C 85, 035210 (2012)

Details in Wed joint WG1-2-3 session, S. Murphy

Flux[/10²¹ POT/50 MeV/cm²⁻ v_{μ} at SK \overline{v}_{μ} at SK $\varepsilon 0^5$ v_e at SK \overline{v}_{a} at SK 04 10^{3} 10^{2} 10 2 8 9 5 103 7 6 E_{ν} (GeV) $[/cm^{2}/50MeV]$ all kaon parents pion parents muon parents K Mahn, NuFACI 2 3 5 7 8 9 10 0 4 6

2012/07/24

Neutrino flux at ND and SK

Neutrino Mode	Trkr. ν_{μ}	Trkr. ν_{μ}	SK ν_e	SK ν_e	SK ν_e
	CCQE	CCnQE	Sig.	CC intrinsic Bgnd.	NC Bgnd.
$\pi^+ \rightarrow \nu_\mu + \mu^+$	82.2%	45.8%	99.3%	1.1%	70.3%
$\mu^+ \to \nu_e + e^+ + \bar{\nu_\mu}$	$<\!\!1\%$	$<\!\!1\%$	< 0.1%	66.0%	< 0.1%
$K^{+,0} \rightarrow \nu_e + X$	$<\!\!1\%$	$<\!\!1\%$	< 0.1%	33.0%	< 0.1%
$K^{+,0} \rightarrow \nu_{\mu} + X$	17.4%	53.4%	0.7%	_	29.7%

ND samples represent ν_{μ} flux

- v_{μ} from π decay: CCQE, CCnQE samples
- v_{μ} from K decay: CCnQE sample

Neutrino flux at ND and SK

Neutrino flux at ND and SK

Neutrino interaction uncertainties

Cross section model (NEUT, GENIE) composed of:

- Base model prediction
- Final state interaction model (FSI)

Cross section model uncertainties set from fits to MiniBooNE data ($E_v \sim 1 \text{ GeV}$) for signal and background (CCQE, CC1 π and NC π^0) interactions

- Single pion (CC and NC) interaction datasets fit simultaneously (details in Thurs WG2 session by P. Rodrigues)
- SciBooNE, K2K datasets used as cross check

Neutrino interactions at ND and SK

Interaction Mode	Trkr. ν_{μ} CCQE	Trkr. ν_{μ} CCnQE	SK ν_e Sig.	SK ν_e Bgnd.
CCQE	76.6%	14.6%	85.8%	45.0%
$CC1\pi$	15.6%	29.3%	13.7%	13.9%
CC coh.	1.9%	4.2%	0.3%	0.7%
CC other	4.1%	37.0%	0.2%	0.7%
NC	1.5%	5.3%	-	39.7%

CCQE and CC1 π are the largest interaction mode in ND, SK samples

Caveats:

- Acceptance: ND sample is forward going (small angle, low Q²)
 - External data covers larger Q² (MiniBooNE, 4π Cherenkov detector)
- Target: ND selection is C, SK is O
 - C-O model dependent uncertainties included

Neutrino interactions at ND and SK

Interaction Mode	Trkr. ν_{μ} CCQE	Trkr. ν_{μ} CCnQE	SK ν_e Sig.	SK ν_e Bgnd.
CCQE	76.6%	14.6%	85.8%	45.0%
$CC1\pi$	15.6%	29.3%	13.7%	13.9%
CC coh.	1.9%	4.2%	0.3%	0.7%
CC other	4.1%	37.0%	0.2%	0.7%
NC	1.5%	5.3%	-	39.7%

- Indirect constraint on NC (1π⁰) through CC1π in ND measurement
- Additional ND selection of NCπ⁰ with POD detector
 - No MiniBooNE-based tuning applied here

ND280 constraint fit pieces

Neutrino flux term $ln \; L_{flux}(ec{f})$

Flux parameterization, f

- Normalization on E_v bins
- 11 bins for ν_{μ} flux

Neutrino cross section term $ln \; L_{xsec}(ec{x} \;)$

Cross section parameterization, x

- Combination of normalization and model parameters
- Used reweighting techniques

MAQE (GeV)	Axial mass (QE)	
MARES (GeV)	Axial mass (1π)	
QE1 0 <e<sub>v<1.5 GeV</e<sub>	Normalization	
QE2 1.5 <e<sub>v<3.5 GeV</e<sub>	Normalization	
QE3 E _v >3.5 GeV	Normalization	
CCRES1 E _v <2.5 GeV	Normalization	
CCRES2 E _v >2.5 GeV	Normalization	
NC1π ⁰	Normalization	
pF (MeV/c)	Fermi momentum	
Spectral Function	Model comparison	
CC other	Normalization	

ND280 constraint fit pieces

ND280 constraint fit pieces

$$\begin{split} -2lnL &= 2\sum_{i}^{p,\theta \ bins} N_{i}^{pred}(\vec{f},\vec{x},\vec{d}) - N_{i}^{data} + N_{i}^{data} ln[N_{i}^{data}/N_{i}^{pred}(\vec{f},\vec{x},\vec{d})] \\ &+ \sum_{j}^{E_{\nu} \ bins} \sum_{k}^{bins} (1-f_{j})(V_{f}^{-1})_{j,k}(1-f_{k}) \\ &+ \sum_{j}^{xsec \ pars \ xsec \ pars} \sum_{k}^{m} (x_{nom} - x_{l})(V_{x}^{-1})_{l,m}(x_{nom} - x_{m}) \\ &+ \sum_{l}^{p,\theta \ bins} \sum_{p,\theta \ bins}^{p,\theta \ bins} (1-d_{i})(V_{d}^{-1})_{i,n}(1-d_{n}) \\ &+ ln(\frac{|V_{d}(\vec{f},\vec{x})|}{|V_{d}^{nom}|}) \end{split}$$

$$-2lnL = 2\sum_{i}^{p,\theta \ bins} N_{i}^{pred}(\vec{f},\vec{x},\vec{d}) - N_{i}^{data} + N_{i}^{data} ln[N_{i}^{data}/N_{i}^{pred}(\vec{f},\vec{x},\vec{d})]$$

$$+\sum_{j}^{E_{\nu} \ bins} \sum_{k}^{E_{\nu} \ bins} (1-f_{j})(V_{f}^{-1})_{j,k}(1-f_{k})$$

$$+\sum_{\substack{p,\theta \text{ bins } p,\theta \text{ bins } p,\theta \text{ bins } \\ +\sum_{\substack{p,\theta \text{ bins } p,\theta \text{ bins } p,\theta \text{ bins } \\ +\sum_{\substack{r \in QE \\ |V_d(\vec{f},\vec{x})| \\ |V_d^{nom}|}} \sum_{\substack{r \in QE \\ |V_d(\vec{f},\vec{x})| \\ |V_d^{nom}|}} (1-d_i)(V_d^{-1})_{i,n}(1-d_n)$$
Fit CCQE, CCnQE p_µ-θ_µ distribution (20x2 bins)
Sensitive to to rate (Φ x σ) changes:
$$E_{\nu}^{QE} = \frac{m_p^2 - m'_n^2 - m_\mu^2 + 2m'_n E_\mu}{2(m'_n - E_\mu + p_\mu \cos \theta_\mu)}$$

$$-2lnL = 2\sum_{i}^{p,\theta \ bins} N_i^{pred}(\vec{f},\vec{x},\vec{d}) - N_i^{data} + N_i^{data} ln[N_i^{data}/N_i^{pred}(\vec{f},\vec{x},\vec{d})]$$

$$+\sum_{j}^{E_{
u}\ bins}\sum_{k}^{E_{
u}\ bins}(1-f_{j})(V_{f}^{-1})_{j,k}(1-f_{k}) \; \left[ln \; L_{flux}(ec{f})
ight]$$

$$-2lnL = 2\sum_{i}^{p,\theta\ bins} N_i^{pred}(\vec{f},\vec{x},\vec{d}) - N_i^{data} + N_i^{data} ln[N_i^{data}/N_i^{pred}(\vec{f},\vec{x},\vec{d})]$$

$$+\sum_{j}^{E_{\nu} \ bins} \sum_{k}^{E_{\nu} \ bins} (1-f_{j})(V_{f}^{-1})_{j,k}(1-f_{k})$$

$$+\sum_{l}\sum_{m}\sum_{m}(x_{nom} - x_{l})(V_{x}^{-1})_{l,m}(x_{nom} - x_{m})$$

$$+\sum_{i}\sum_{n}\sum_{p,\theta \text{ bins } p,\theta \text{ bins } p,\theta \text{ bins } (1 - d_{i})(V_{d}^{-1})_{i,n}(1 - d_{n})$$

$$+\ln(\frac{|V_{d}(\vec{f}, \vec{x})|}{|V_{d}^{nom}|})$$
Prior constraint likelihood terms for detector systematic errors
$$+ \operatorname{Also includes uncertainties (e.g. FSI) which could not be otherwise easily parameterized to the otherwise easily parameterized$$

 Determined from control samples, calibration data, and external pion scattering data

21

Detector systematic errors

Currently statistics dominated

K Mahn, NuFACT

ND measurement results

Effect of ND measurement on v_e signal, background

- Rate of v_{e} signal and backgrounds without ND measurement and with ND measurement
- Uncertainty envelope from constrained flux, cross section parameters
- Includes correlation between flux and cross section at ND, SK

Prediction Tuning

1.4

1.2

0.8

0.6

2012/07/24

500

Total systematic uncertainty for v_e appearance

Determine $sin^2 2\theta_{13}$ from v_e candidates' rate and kinematic distributions

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

More details in Fri plenary session (C. McGrew)

Signal (v_{μ} to v_{e} osc)	# events	Uncertainties	v _e bkrd	v _e sig+bkrd
@sin ² 2θ ₁₃ =0.1,δcp=0	7.81	v flux+xsec (constrained by ND280)	±8.7%	±5.7%
Background beam $y \pm \overline{y}$	# events	v xsec (unconstrained by ND280)	±5.9%	±7.5%
	1.75	Far detector	±7.7%	±3.9%
$v_{\mu} + v_{\mu}$ (mainly NC) background	1.31	Total	±13.4%	±10.3%
osc through θ_{12}	0.18	No ND measurement	26%	22%
total:	3.22 ± 0.43 (svs)			

 v_e signal@ Δm_{32}^2 =2.4 x 10⁻³ eV², sin²2 θ_{23} =1.0 Event predictions normalized by ND280

Total systematic uncertainty for v_e appearance

Determine $sin^2 2\theta_{13}$ from v_e candidates' rate and kinematic distributions

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta n}{\Delta t}\right)$$

More details in Fri plenary session (C. McGrew)

Signal (v_{μ} to v_{e} osc)	# events	
@sin ² 2θ ₁₃ =0.1,δcp=0	7.81	
Background	# events	
beam $v_{e} + \overline{v_{e}}$	1.73	
$v + \overline{v}$ (mainly NC)	1 31	
background	1.31	
osc through $\theta_{\rm 12}$	0.18	
total:	3.22±0.43(sys)	

 v_e signal@ Δm_{32}^2 =2.4 x 10⁻³ eV², sin²2 θ_{23} =1.0 Event predictions normalized by ND280

Uncertainties	v _e bkrd	v _e sig+bkrd
v flux+xsec (constrained by ND280)	±8.7%	±5.7%
v xsec (unconstrained by ND280)	±5.9%	±7.5%
Far detector	±7.7%	±3.9%
Total	±13.4%	±10.3%
2011 (normalization- only) analysis	23%	18%

Reduction in total uncertainty from:

- Reduced individual uncertainties (e.g. far detector and flux uncertainties)
- Improved use of ND information

2012/07/24

Summary

Precision measurements of neutrino mixing parameters requires increased control over systematic uncertainties:

• v_{μ} disappearance ($\Delta m_{32}^2, \theta_{23}$) and v_e appearance (θ_{13})

For the T2K v_e appearance analysis, the systematic errors are constrained to ~10% on the far detector expected v_e rate using data from the near detector

- Improvement since 2011 result (~22%)
- v_{μ} disappearance results will be updated soon with the improved near detector constraint

Future T2K analyses will extend the current ND measurement to include:

- More control samples (CC1π selection)
- Backward going tracks for increased acceptance
- Carbon and water target comparisons

Backup slides

Core of analysis: Flux parameterization

Neutrino flux prediction

Flux parameterization: f_i Normalization on E_v bin i for SK and ND samples

Current binning for T2K flux:

- v_{μ} : 0.0-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-1.0, 1.0-1.5, 1.5-2.5, 2.5-3.5, 3.5-5.0, 5.0-7.0, 7.0-30.0 GeV (11 bins each ND and SK samples, index 0-10 and 11-21)
- \overline{v}_{μ} : 0.0-1.5, 1.5-30.0 GeV (2 bins, SK sample, index 22-23)
- v_e: 0.0-0.5, 0.5-0.7, 0.7-0.8, 0.8-1.5, 1.5-2.5, 2.5-4.0, 4.0-30.0 GeV (7 bins, index 24-30)
- \overline{v}_e : 0.0-2.5, 2.5-30.0 GeV (2 bins, SK sample, index 31-32)

Flux parameterization

Neutrino flux prediction

Flux parameterization: f_i Normalization on E_v bin i for SK and ND samples

Correlations between flux bins

Correlations in flux covariance are shared hadron production uncertainties

Flux covariance built from measurements of beam or external data (e.g. NA61)

T2K neutrino flux uncertainties

Cross section parameterization: x_k

Model parameters:

- MAQE and MARES (modify Q² distribution of QE and resonant 1pi cross sections)
- Fermi momentum (pF) provides low Q2 handle, and is target dependant (C vs. O)
- Spectral function RFG modelmodel difference is also target dependant

Normalizations provide overall scaling independent of Q² on a particular interaction

Apply cross section to observables at ND, SK using reweighting techniques

M _A ^{QE} (GeV)	1.21 ± 0.45	1.19 ± 0.19
M _A ^{RES} (GeV)	1.162 ± 0.110	1.137 ± 0.095
CCQE Norm. 0-1.5 GeV	1.000 ± 0.110	0.941 ± 0.087
CCQE Norm. 1.5-3.5 GeV	1.00 ± 0.30	0.92 ± 0.23
CCQE Norm. >3.5 GeV	1.00 ± 0.30	1.18 ± 0.25
CC1π Norm. 0-2.5 GeV	1.63 ± 0.43	1.67 ± 0.28
CC1π Norm. >2.5 GeV	1.00 ± 0.40	1.10 ± 0.30
NC1π⁰ Norm.	1.19 ± 0.43	1.22 ± 0.40
Fermi Momentum (MeV/c)	217 ± 30	224 ± 24
Spectral Function	0(off) ± 1(on)	0.04 ± 0.21
CC Other Shape (GeV)	0.00 ± 0.40	-0.05 ± 0.35

Parameter value, uncertainty is determined from MiniBooNE single pion samples

Parameter value, uncertainty is extrapolated to SK sample

ND CCQE and CCnQE v_{μ} samples

CC inclusive v_{μ} candidate selection:

- 1. Require no tracks in TPC1 (veto v interactions upstream of FGDs)
- 2. Select events which originate in FGD1 fiducial volume
- 3. Use the highest momentum, negative TPC2 track
- 4. Select μ from TPC dE/dx information to determine flavor of neutrino

Separate sample into two subsamples, CCQE enhanced and CCnQE enhanced CCQE enhanced: 1 TPC-FGD matched track, no decay electron in FGD1 CCnQE enhanced: all other CC inclusive

2012/07/24

K Mahn, NuFACT

Flux parameters change after ND measurement

without ND measurement and with ND measurement

2012/07/24

Covariance

Covariance post-ND measurement

Flux and shared cross section become correlated

v_u disappearance results

2012/07/24

The T2K Collaboration

<u>Canada</u>

TRIUMF U of Alberta U of B Columbia U of Regina U of Toronto U of Victoria U Winnipeg York U

<u>Switzerland</u>

Bern ETH Zurich U of Geneva

<u>Poland</u>

NCBJ IFJ PAN T U Warsaw U of Silesia Warsaw U Wroclaw U

<u>Russia</u> INR 2012/07/24

<u>Korea</u>

Chonnam Nat'l U Dongshin U Seoul Nat'l U <u>Italy</u> INFN Bari INFN Roma Napoli U Padova U

<u>France</u>

CEA Saclay IPN Lyon LLR E Poly LPNHE-Paris **Spain** IFIC, Valencia IFAE, Barcelona Japan ICRR Kamioka ICRR RCCN KEK Kobe U Kyoto U Miyagi U of Ed Osaka City U U of Tokyo

USA Boston U Colorado State U Duke U Louisiana State U Stony Brook U U of California, Irvine U of Colorado U of Pittsburgh U of Rochester U of Washington UK U of Oxford Imperial C London Lancaster U Queen Mary U of L Sheffield U STFC/RAL STFC/Daresbury U of Liverpool U of Warwick Germany RWTH Aachen U8

TPC dE/dx particle ID

Energy loss of the particle (dE/dx) can be used to separate particle type

dE/dx resolution for MIPs is 8%

Probability for a muon between 0.2 and 1.0 GeV to be identified using dE/dx as an electron is less than 0.2%

ND280 beam v_e rate cross-check (I)

Select ν_{e} candidates at ND280 with TPC PID to check rate of intrinsic beam ν_{e}

Additional backgrounds to v_e selection, measured via control samples

μ misidentified as e

e from photon conversion (photons emitted in v_{μ} interactions in FGD and other subdetectors)

Ratio of observed v_e / v_μ events is consistent with untuned prediction

 $N(v_e)/N(v_{\mu}) = R(e:\mu) = 1.0\% \pm 0.7\%$ (statistics) $\pm 0.3\%$ (systematics) R(e: μ , data) / R(e: μ , MC) = 0.6 ± 0.4 (statistics) ± 0.2 (systematics)

Improvements to the analysis:

- Improved rejection of backgrounds with ECals
- More data: 2.88 x 10¹⁹ POT shown here

4/11/12

ND280 beam v_e rate cross-check (II)

Select high energy CC v_e candidates within the POD:

- Reconstructed track matched in x,y with vertex in FV consistent with an single EM shower (reject π⁰ mutiple photon showers and muons)
- Primary backgrounds are HE π⁰ events

Consistent with current untuned MC:

data-bkrd(MC)/sig(MC)= R = 1.19 ± 0.15(statistics) ± 0.26 (systematics)