

SUMMARY SQUESTIONS

Robert Bernstein (FNAL) Naohito Saito (KEK) <u>Giovanni Signorelli</u> (INFN Pisa)

NuFact 2012, Williamsburg, VA, USA July 23–28 2012

Muon physics

• A Neutrino Factory is also a Muon Factory

B-factory: E at CM = Y(4S) $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$ $\sigma(\tau\tau)\sim 0.9\text{nb}, \sigma(bb)\sim 1.1\text{nb}$ A B-factory is also a τ -factory!

Kiyoshi Hayasaka

•
$$p + \text{target} \to \overset{\pi \to \mu\nu}{K \to \mu\nu}$$

Yorktown battlefield

Muon physics

- charged Lepton Flavour Violation (cLFV)
 - μ→eγ, μ→eee
 - µ2e, τ→cLFV
- Precision experiments
 - **–** μHFS
 - **-** g-2
 - μ-Lamb Shift
 - µ-capture
- Muon Facilities
 - present & future
- Muon applications

7 talks

8 talks

16 talks

2 talks

total of 33 talks

Including WG1+4 (1 session 3 talks) & WG3+4 (3 sessions 11 talks)

µ-applications

- Get a proton beam
- Shoot it on a target
- Compute the particle flux
- Find a mine to put an experiment

µ-applications

- Get a proton beam
- Shoot it on a target
- Compute the particle flux
- Find a mine to put an experiment

CR Muon Intensity vs. Depth

Search for ores

- Nothing comparable with present technology
- Does not give false positives

Forward Model

Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)

Simulation samples

- Based on forward model, generate noise data
- Used to design survey and perform NULL hypotheses tests

Doug Bryman

Volcanoes & earthquakes

- Imaging of volcanoes, seismic faults with unprecedented resolution
 - aiming at "real time"

- Detector technology derived by neutrino physics
 - Opera experience with scintillator bar array + emulsion

Questions from Nufact 2011

What we expect at Nufact12

- MEG
 - New results
- μ-e conversion
 - Mu2e
 - COMET
 - R&D : MuSIC
- J-PARC MUSE activities : H-Line
 - Mu HFS
 - DeeMe
 - g-2/EDM
- FNAL g-2
- $PSI: \mu \rightarrow eee, muEDM$
- T-sector
 - combined Belle and BaBar results
 - Prospects for Belle-II and SuperB
- Precision tests
 - μ lifetime (MuLAN)
 - cross sections (MuSUN)

- R&D of intense muon source
 - MuSIC
 - Laser ionization of Muonium
 - Muon production Joint with
 - Pion collection WG2,3
 - Leading work towards muon collider
 - MICE related talk
 - Muon production and cooling
- PRISM/PRIME
- High intensity proton driver physics / intensity frontier physics
 - Rare K
 - nEDM
 - Theory

- Joint with WG1
- Reflect LHC search results to the physics scope of the WG
- Implications due to new measurements of θ_{13} , δ_{CP}

Questions from Nufact 2011

What we expect at Nufact12

38

- MEG
 - New results
- μ-e conversion
 - Mu2e
 - COMET
 - R&D : MuSIC
- J-PARC MUSE activities : H-Line
 - Mu HFS
 - DeeMe
 - g-2/EDM
- FNAL g-2
- $PSI: \mu \rightarrow eee, muEDM$
- T-sector
 - combined Belle and BaBar results
 - Prospects for Belle-II and SuperB
- Precision tests
 - μ lifetime (MuLAN)
 - cross sections (MuSUN)
 - WG4 summary

- R&D of intense muon source
 - MuSIC
 - Laser ionization of Muonium
 - Muon production Joint with
 - Pion collection WG2,3
 - Leading work towards muon collider
 - MICE related talk
 - Muon production and cooling
- PRISM/PRIME
- High intensity proton driver physics / intensity frontier physics
 - Rare K
 - nEDM
 - Theory
 - Reflect LHC search results to the physics scope of the WG

Joint with

WG1

- Implications due to new measurements of θ_{13} , δ_{CP}

Highlights of 2012

- 9_{13} is big
- (SM) Higgs boson is at 125 GeV
- SUSY not seen so far

Bob Tschirhart

		ATLAS SUSY Se	earches* - 95% CL Lov	wer Limits (Status: ICHEP 20)12)
ive searches	$\begin{array}{l} MSUGRA/CMSSM: 0 \; lep + j's + E_{\tau,miss} \\ MSUGRA/CMSSM: 1 \; lep + j's + E_{\tau,miss} \\ MSUGRA/CMSSM: 0 \; lep + multijets + E_{\tau,miss} \\ Pheno \; model: 0 \; lep + j's + E_{\tau,miss} \\ Pheno \; model: 0 \; lep + j's + E_{\tau,miss} \\ Pheno \; model: 0 \; lep + j's + E_{\tau,miss} \\ Gluino \; med. \; \widetilde{\chi}^{*} \; (\mathfrak{g} \rightarrow q\mathfrak{g}\widetilde{\chi}^{*}): 1 \; lep + j's + E_{\tau,miss} \end{array}$	L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0331 L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0411 L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0411 L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0331 L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0411	1.4 1.20 T 840 GeV 940 GeV 900 GeV	D TEV $\widetilde{\mathbf{q}} = \widetilde{\mathbf{g}} \text{ mass}$ AV $\widetilde{\mathbf{q}} = \widetilde{\mathbf{g}} \text{ mass}$ mass (large m_0) TEV $\widetilde{\mathbf{q}} \text{ mass}$ ($m(\widetilde{\mathbf{q}}) < 2 \text{ TeV}$, light $\widetilde{\chi}_1^0$) $\widetilde{\mathbf{g}} \text{ mass}$ ($m(\widetilde{\mathbf{q}}) < 2 \text{ TeV}$, light $\widetilde{\chi}_1^0$) $\widetilde{\mathbf{g}} \text{ mass}$ ($m(\widetilde{\mathbf{q}}) < 200 \text{ GeV}$, $m(\widetilde{\mathbf{x}}^*) = \frac{1}{2}(m(\widetilde{\mathbf{x}}^0) + m(\widetilde{\mathbf{g}}))$)	.03 - 4.8) fb ⁻¹ √s = 7 TeV ATLAS
Inclus	GMSB : 2 lep OSSF + $E_{\tau,miss}$ GMSB : 1- τ + j's + $E_{\tau,miss}$ GMSB : 2- τ + j's + $E_{\tau,miss}^{T,miss}$ GGM : $\gamma\gamma$ + $E_{\tau,miss}^{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV IATLAS-CONF-2011-1583 L=2.1 fb ⁻¹ , 7 TeV (1204.38523 L=2.1 fb ⁻¹ , 7 TeV (1203.65803 L=4.8 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0723	810 GeV g 920 GeV 990 GeV 1.07 Te	Mass $(\tan \beta < 35)$ \breve{j} mass $(\tan \beta > 20)$ \widetilde{g} mass $(\tan \beta > 20)$ \widetilde{g} mass $(\tan \beta > 20)$ \widetilde{g} mass $(m(\overline{\chi}^0_{\gamma}) > 50 \text{ GeV})$	Prenimary
. squarks nediated	$\hat{g} \rightarrow b\tilde{b}_{\chi_{1}}^{\mathcal{C}}$ (virtual \hat{b}) : 0 lep + 1/2 b-j's + $E_{\tau,miss}$ $\tilde{g} \rightarrow b\tilde{b}_{\chi_{1}}^{\mathcal{C}}$ (virtual \hat{b}) : 0 lep + 3 b-j's + $E_{\tau,miss}$ $\tilde{g} \rightarrow b\tilde{b}_{\chi_{1}}^{\mathcal{C}}$ (real \hat{b}) : 0 lep + 3 b-j's + $E_{\tau,miss}$ $\tilde{g} \rightarrow t\tilde{t}_{\chi_{10}}^{\mathcal{C}}$ (virtual $\tilde{t}_{\chi}^{\mathcal{C}}$: 1 lep + 1/2 b-j's + $E_{\tau,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.8193] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-058] L=2.1 fb ⁻¹ , 7 TeV [1203.6193]	900 GeV 1.02 TeV 1.00 TeV 710 GeV _ g m	$mass (m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV})$ $\tilde{g} mass (m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV})$ $\tilde{g} mass (m(\tilde{\chi}_{1}^{0}) = 60 \text{ GeV})$ $ss (m(\tilde{\chi}_{1}^{0}) < 150 \text{ GeV})$	
3rd gen gluino r	$\tilde{g} \rightarrow t \tilde{t}_{\Sigma_{1}}^{\infty}$ (virtual t) : 2 lep (SS) + j's + $E_{T,miss}$ $\tilde{g} \rightarrow t \tilde{t}_{\Sigma_{1}}^{\infty}$ (virtual t) : 0 lep + multi-j's + $E_{T,miss}$ $\tilde{g} \rightarrow t \tilde{t}_{\Sigma_{1}}^{\infty}$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$ $\tilde{g} \rightarrow t \tilde{t}_{\Sigma_{1}}^{\infty}$ (real t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV [1203.5763] L=4.7 fb ⁻¹ , 7 TeV [1208.1760] L=4.7 fb ⁻¹ , 7 TeV [1208.1760] L=4.7 fb ⁻¹ , 7 TeV [17LAS-CONF-2012-058] L=4.7 fb ⁻¹ , 7 TeV [17LAS-CONF-2012-058]	650 GeV ĝima 870 GeV ĝ 940 GeV 820 GeV ĝ 820 GeV ĝ	S $(m(\tilde{\chi}_{1}^{0}) < 210 \text{ GeV})$ MASS $(m(\tilde{\chi}_{1}^{0}) < 100 \text{ GeV})$ J MASS $(m(\tilde{\chi}_{1}^{0}) < 50 \text{ GeV})$ MASS $(m(\tilde{\chi}_{1}^{0}) = 60 \text{ GeV})$	
3rd gen. squarks direct production	tt (very light), $\tilde{t} \rightarrow b\tilde{\chi}_1^*$: 2 lep + $E_{T,miss}$ tt (very light), $\tilde{t} \rightarrow b\tilde{\chi}_1^*$: 2 lep + $E_{T,miss}$ tt (light), $\tilde{t} \rightarrow b\tilde{\chi}_2^*$: 1/2 lep + b-jet + $E_{T,miss}$ tt (heavy), $\tilde{t} \rightarrow \tilde{\chi}_2^0$: 0 lep + b-jet + $E_{T,miss}$ tt (heavy), $\tilde{t} \rightarrow \tilde{\chi}_2^*$: 1 lep + b-jet + $E_{T,miss}$ tt (heavy), $\tilde{t} \rightarrow \tilde{\chi}_2^*$: 2 lep + b-jet + $E_{T,miss}$ tt (GMSB): 2(\rightarrow III) + b-jet + $E_{T,miss}$	L=2.1 fb ⁻¹ , 7 TeV (CONF-2012-059) 135 GeV L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-059) 135 GeV L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-070) 120-173 G L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-073) L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-073) L=2.1 fb ⁻¹ , 7 TeV (1204.6738)	390 GeV D mass $(m(\chi))$ aev T mass $(m(\chi)) = 45$ GeV) 380-465 GeV T mass $(m(\chi)) = 45$ GeV) 380-465 GeV T mass $(m(\chi)) = 00$ 396-305 GeV T mass $(m(\chi)) = 00$ 310 GeV T mass $(m(\chi)) = 00$ 310 GeV T mass $(m(\chi)) = 00$	$\left\{ \begin{array}{l} \overline{x}_{1}^{0} = 0 \\ \overline{y}_{1}^{0} = 0 \end{array} \right\}$	
EW direct	$\begin{array}{c} & \left[\left[1, 1 \rightarrow \right] \widetilde{\chi}_{1}^{t} : 2 \text{ lep } + E_{T,\text{miss}}^{T,\text{miss}} \\ & \widetilde{\chi}_{1}^{t} \widetilde{\chi}_{1}^{t} \rightarrow \left[V(\left[\widetilde{v} \right] \rightarrow \left[v \widetilde{\chi}_{0}^{t} \right] : 2 \text{ lep } + E_{T,\text{miss}} \\ & \widetilde{\chi}_{1}^{t} \widetilde{\chi}_{2}^{t} \rightarrow 3 \left[\left[v v \right] + v + 2 \widetilde{\chi}_{1} \right] : 3 \text{ lep } + E_{T,\text{miss}} \\ & AMSB : \text{ long-lived } \widetilde{\chi} \end{array}$	L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-076) 93-180 L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-076) L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-077) L=4.7 fb ⁻¹ , 7 TeV (CONF-2012-034)118 GeV	Gev Î mass (m(x ⁰ ₁) = 0) 120-330 Gev $\tilde{\chi}^+_1$ mass (m(x ⁰ ₁) 60-500 Gev $\tilde{\chi}^+_1$ mass * mass (1 < x(x ⁰) < 2 ns. 90 GeV in	$= 0, m(\overline{1,v}) = \frac{1}{2}(m(\overline{x_1^*}) + m(\overline{x_1^0}))) (m(\overline{x_1^*}) = m(\overline{x_2^0}), m(\overline{x_1^0}) = 0, m(\overline{1,v}) as above) (m in [0.2.90] ns)$	
Long-lived particles	Stable ğ R-hadrons : Full detector Stable b R-hadrons : Full detector Stable t R-hadrons : Full detector Metastable ğ R-hadrons : Pixel det. only GMSB : stable t	L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0753 L=4.7 fb ⁻¹ , 7 TeV IATLAS-CONF-2012-0753	985 GeV 612 GeV b mas 683 GeV t ma 910 GeV 310 GeV τ mass (5 < tanβ	ğ mass s s 1 mass (τ(ğ) > 10 ns) :20)	
RPV	RPV : high-mass e_{μ} Bilinear RPV : 1 lep + j's + $E_{T,miss}$ BC1 RPV : 4 lep + $E_{T,miss}$	L=1.1 fb ⁻¹ , 7 TeV [1109.3089] L=1.0 fb ⁻¹ , 7 TeV [1109.6606] L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-035]	1.32 760 GeV	TeV \tilde{v}_{τ} mass (λ'_{311} =0.10, λ_{312} =0.05) \tilde{g} mass ($c\tau_{LSP} < 15$ mm) 1.77 TeV \tilde{g} mass	
Other	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$ Spin dep. WIMP interaction : monojet + $E_{T,miss}$ pin indep. WIMP interaction : monojet + $E_{T,miss}$	L=34 pb ⁻¹ , 7 TeV (1110.2693) 100-185 L=4.7 fb ⁻¹ , 7 TeV (ATLAS-CONF-2012-084) 1 L=4.7 fb ⁻¹ , 7 TeV (ATLAS-CONF-2012-084) 1	GeV Sgluon mass (not excluder 709 GeV M* 548 GeV M* scal	$m_{sg} = 140 \pm 3 \text{ GeV}$ Cale $(m_{\chi} < 100 \text{ GeV}, \text{ vector D5}, \text{Dirac}_{\chi})$ $(m_{\chi} < 100 \text{ GeV}, \text{ tensor D9}, \text{Dirac}_{\chi})$	
		¹⁰ 35			
₹Op!	wa adaption of the quailable mass limits on new at	atas ar phanamana shawn	1 1	A Mass	scale [IeV]

*Only a selection of the available mass limits on new states or phenomena shown

1 TeV

Focus of 2012

• How µ-physics is influenced by the news?

 θ_{13} dependence

Type I: in general the connection between seesaw couplings and the
PMNS is 'washed out' by the matrix RCasas et al '10

However, theoretically motivated examples where the correlation is there:

• Trivial mixing from RHv (i.e. $R \sim 1$) :

LFV vs θ_{13}

Lorenzo Calibbi (MPP)

• Not only a direct dependence on the angle

Lorenzo Calibbi

Focus of 2012

• But also the mass scale that is tested is far beyond the LHC

Introduction

Why LFV?

- Unambigous signal of New Physics
- Stringent test of NP models
- It probes scales far beyond the LHC reach: $BR(\mu \rightarrow e\gamma) < 10^{-13}$

Process	Relevant operators	Pres. Bound on Λ $(c = 1)$	Fut. Bound on Λ ($c = 1$)
$\mu ightarrow e \gamma$	$\frac{c}{\Lambda^2} \frac{m_{\mu}}{16\pi^2} \overline{\mu}_L \sigma^{\mu\nu} e_R F_{\mu\nu}$	48 TeV	107 TeV
	$\frac{c}{16\pi^2\Lambda^2} (\overline{\mu}_L \gamma^\mu e_L) (\overline{e}_L \gamma^\mu e_L)$	17 TeV	166 TeV
$\mu \rightarrow eee$	$\frac{c}{16\pi^2\Lambda^2}(\overline{\mu}_L e_R)(\overline{e}_R e_L)$	$10 { m TeV}$	98 TeV
$\mu \rightarrow e$ in Ti	$\frac{c}{16\pi^2\Lambda^2}(\overline{\mu}_L\gamma^\mu e_L)(\overline{d}_L\gamma^\mu d_L)$	33 TeV	$577 { m TeV}$
μ / C III II	$\frac{c}{16\pi^2\Lambda^2}(\overline{\mu}_L e_R)(\overline{d}_R d_L)$	$59 { m ~TeV}$	1000 TeV
LC Lalak Pokor	rski Ziegler '12 BR	$(\mu \to eee) < 10^{-16}$ CR	$\mu(\mu \to e \text{ in Ti}) < 5 \times 10^{-17}$

Susan Gardner

CL: $m_{\tilde{g}} > 1098 { m GeV} \qquad m_{\tilde{t}} > 737 { m GeV} \qquad m_{\tilde{ au}} > 223 { m GeV}$						
In the absence of signals from the LHC, EDMs can give crucial insight. Note talk by K. Blum.						

Lorenzo Calibbi

Focus of 2012

• But also the mass scale that is tested is far beyond the LHC

 θ_{13} dependence

Type I: in general the connection between seesaw couplings and the
PMNS is 'washed out' by the matrix RCasas et al '10

However, theoretically motivated examples where the correlation is there:

• SO(10) GUT ('PMNS mixing' case):

$$\mathrm{BR}(\mu \to e\gamma) \propto \left| y_t^2 U_{\mu 3} U_{e3}^* \right|^2$$

LC Chowdhury Masiero Patel Vempati, to appear

$$m_0 \in [0, 5]$$
 TeV $\Delta m_H \in \begin{cases} 0 & ext{for mSUGRA} \ [0, 5] & ext{for NUHM1} \end{cases}$ $m_{1/2} \in [0.1, 2]$ TeV $A_0 \in [-3m_0, +3m_0]$ $\operatorname{sgn}(\mu) \in \{-, +\}$

$$|U_{e3}| = 0.11$$

 $124.5 \text{ GeV} \lesssim m_h \lesssim 126.5 \text{ GeV}$

Lorenzo Calibbi

cLFV Experiments

CLFV Experiments

• CLFV in the Muon System

History of
$$\mu \to e\gamma$$
, $\mu N \to eN$, and $\mu \to 3e$

14

R. Bernstein

$\mu \rightarrow e\gamma$ search status

Elisabetta Baracchini

Conclusions & Prospects

- 🗳 2009 + 2010 MEG data analysis consistent with null signal
- Most stringent UL on LFV improved by a factor 5

BR($\mu^+ \rightarrow e^+ \gamma$) < 2.4 x 10⁻¹² @ 90% CL

MEG 2011 dataset > 2010 +2009 statistic with improved trigger, DAQ and DC noise conditions

Expected sensitivity with 2011 data: 1 x 10⁻¹² Stay tuned!! :)

- 👻 2012 data taking starting this week
- Upgrade proposal getting finalized and soon to be presented to INFN (this week) and PSI (end of the year)

Upgrade proposal sensitivity O(10⁻¹⁴)

$\mu \rightarrow e\gamma$ search status

• MEG Upgrade towards $(5 \div 6) \times 10^{-14}$

Elisabetta Baracchini

- New Experiments?
 - convert the photon

Other problem:

Need target extended in z (~150 cm) since gamma is pointing in from so far out.

Putting calorimetry / tof On sides doesn't work...

They could go inside converter if they're not too thick

Fritz DeJongh

Which is the ultimate reach of a $\mu \rightarrow e\gamma$ search?

And, in the meanwhile we want to hear, in 2013

- The updated MEG result
- The sensitivity and schedule of the new upgrade
- Calibration & alignment of the new chambers

Photon conversion promising, but still problems

- How to deal with the high rate of positrons?
- pattern recognition?
- background from positron AIF?
- Which are the characteristics of the new tracker?
- At which muon momentum?

New experiment to search for $\mu \rightarrow eee$?

- LOI at PSI for a new $\mu \rightarrow eee$ experiment (HV-MAPS + fibers)
- Need 10⁹ µ/sec. Two stages

cLFV in the **τ**-sector

- τ -LFV: τ has many LFV decays \rightarrow sensitive to many models
- Belle is working on the final result of $\tau \rightarrow \mu \gamma$: expected late 2012
 - **-** 980 fb⁻¹
 - not only $\Upsilon(4S)$ but also $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(5S)$
 - Combination of Babar and Belle results
- SuperKEK physics starts end 2015
- Which is the status of SuperB?

Kiyoshi Hayasaka

Final limit on **T**-cLFV decays? - combination of Belle & Babar

Status of SuperKEK, SuperB

High precision muon physics

- MuLan, TWIST, μ Cap \rightarrow 2011
- Proton radius measurement with µ-H Lamb shift

the proton radius puzzle

inferred from muonic H

- inferred from electronic H

- extraction from e p, e n scattering, $\pi\pi NN$ data (this talk)

- previous extractions from e p scattering (as tabulated in PDG)

Summary

R. Hill

The proton radius is still a puzzle.

 \sim most mundane resolution may be ${\sim}5\sigma$ shift in Rydberg (less mundane resolutions postulated)

e rate on *d* better than 1.5%

– pp fusion, SNO, ³H β -decay

Status and Outlook

- Summer 2011, Run 4: 5e9 good muon stops with decay electron – First analysis pass recently completed
- Fall 2012: Commission newly reconstructed beam line at PSI
- Summer 2013, Run 5: After modest upgrades to TPC, preamps, triggering scheme Collect another 1E10 muon stops
- 2014, Run 6?: TBD

Keep us up-to-date

Status of $(g-2)_{\mu}$ and d_{μ}

• Measuring g-2 is possible through a series of "magic" things

Status of $(g-2)_{\mu}$ and d_{μ}

• QED contribution calculated at 5 loops in May 2012

James Miller

QED now calculated to 5-loops!

Complete Tenth-Order QED Contribution to the Muon g-2

Tatsumi Aoyama,^{1,2} Masashi Hayakawa,^{3,2} Toichiro Kinoshita,^{4,2} and Makiko Nio²

¹Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, ²Nishina Center, RIKEN, Wako, Japan 351-0198 ³Department of Physics, Nagoya University, Nagoya, Japan 464-8602

⁴Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York, 14853, U.S.A (Dated: May 29, 2012)

We report the result of our calculation of the complete tenth-order QED terms of the muon g-2. Our result is $a_{\mu}^{(10)} = 753.29 (1.04)$ in units of $(\alpha/\pi)^5$, which is about 4.5 s.d. larger than the leadinglogarithmic estimate 663 (20). We also improved the precision of the eighth-order QED term of a_{μ} , obtaining $a_{\mu}^{(8)} = 130.8794$ (63) in units of $(\alpha/\pi)^4$. Using the best non-QED value of α , we obtain the standard model prediction $a_{\mu}(SM) = 116$ 591 840 (59) $\times 10^{-11}$, to be compared with the measured value $a_{\mu}(\exp) = 116$ 592 089 (63) $\times 10^{-11}$. The difference $a_{\mu}(\exp) - a_{\mu}(SM) = 249$ (87) $\times 10^{-11}$ is about 2.9 s.d.

PACS numbers: 13.40.Em,14.60.Ef,12.20.Ds

- arXiv:1205.5370v2 [hep-ph] 27 May 2012
- 12,672 diagrams

(g–2) at FNAL

3.6 σ: Theory & Experiment must do better

James Miller

The New g-2 Experiment:

An experiment to Measure the Muon Anomalous Magnetic Moment

to ± 0.14 ppm Precision

- Experiment: E989 at Fermilab ≥ X4 better
 - relocate the storage ring to Fermilab (operations \$)
 - use the p-bar beam line and debuncher storage ring (now called the delivery ring) as a long decay line.
- CD0 expected very soon.
- Building construction will begin in November 2012
 - Precision x4 (±0.14 ppm)

James Miller

(g–2) in Japan

- g-2 J-Parc uses a completely different approach
 - Off magic momentum (no E fields)
 - Ultra-cold muons from muonium emission

- Advantages
 - Suited for precision control of B-field
 - Example : MRI magnet , 1ppm local uniformity
 - Possibility of spin manipulation
 - Effective to cancel various systematics
 - Completely different systematics than the BNL E821 or FNAL

(g-2) in Japan

Tsutomu Mibe

• Extremely important to reduce/understand systematics

•Dec 2011 CDR

• Jan 2012 stage 1 recommendation

2 complementary measurements ongoing

- µ-HFS input to g–2.
- Previous number from LAMPF 1999
 - statistics 107 ppb, B field 56 ppb
 - improve to <1 ppb</p>
 - reach LAMPF statistics in 28 hours

Yoshinori Fukao

- ultra-slow µ production at RAL.
 - cold moderator
 - muonium ionization

• Test for muonium ionization materials

- Efficiency still too low << 1%
- Suggestion to use metallized aerogel

Dai Tomono

Proton EDM

- On the same line of dipole moment measurements
- Reverse E and B
- protons kept in orbit by electric field

Y. Semertzidis

Schedule in US and Japan Detector design New measurement of µHFS Ultra-slow muons - efficiency of the extraction - polarization of extracted muons Can be more specific in the different systematics - magnetic field monitor

$\mu \rightarrow e$ transition

Extinction & beam transport

- There is no coincidence as in $\mu \rightarrow e\gamma$
- Monochromatic high-energy positron at the end of the spectrum
- Create muons \rightarrow wait \rightarrow measure

• Need extinction $< 10^{-10}$

µ2e @ FNAL apparatus

(not shown: Cosmic Ray Veto, Proton Dump, Muon Dump, Proton/Neutron absorbers, Extinction Monitor, Stopping Monitor)

• Beam extinction monitor looks at the generated secondaries → monitor the production target

Two schemes under consideration

Two Schemes Under Consideration

- Pixel Tracker
 - Located above and behind the proton absorber
 - Samples 3 to 4 GeV/c positive charged secondaries
 - Pixel detectors reconstruct and count straight tracks with a well defined direction in 25ns time bins
- > Mini Spectrometer
 - Located beside the proton absorber
 - Samples ~ 1 GeV/c positive charged secondaries
 - Magnetic spectrometer with 4 scintillator stations measures dE/dx, time of flight, and momentum of identified particle tracks

25-07-2012 Peter Kasper, NuFACT 12

• Take a decision by the end of the year

Peter Kasper

Filter for Pixel Monitor

µ2e @ FNAL Status

- Antiproton complex \rightarrow muon campus
- Got CD1 in June 2012!
- Starting in FY2019

μ 2e in Japan \rightarrow Comet phase I e II

- Strong PAC endorsement in March 2012. Submitted proposal in July 2012
- Start construction in 2013
 - physics measurement + background study

Status of COMET project

- We have submitted a LOI of a staging plan and ap roposal of Phase-I to the J-PARC PAC.
 - COMET Phase-I: A proposal has been submitted (July 2012)
 - B(µ+Al→e+Al)<7x10⁻¹⁵ @ 90%CL
 - 8GeV-3.2kW proton beam, 12 days
 - 90deg. bend solenoid, cylindrical detector
 - Background study for the phase2
 - COMET Phase-II: Stage-1 approved (2009)
 - B(µ+Al→e+Al)<6x10⁻¹⁷ @ 90%CL
 - 8GeV-56kW proton beam, 2 years
 - 180deg. bend solenoid, bend spectrometer, transverse tracker+calorimeter
- After a discussion in the last PAC meeting (16-17, March, 2012), We got a strong recommendation from the J-PARC-PAC.
 - "COMET is a high priority component for the J-PARC program." (KEK/J-PARC-PAC March/2012)
 - The IPNS proposed, as the first priority item in the next 5-year plan, to construct a proton beam line and the 1st half of solenoid magnets for COMET Phase-I. The PAC endorsed the laboratory plan.
- J-PARC plans to submit a budget request to the Ministry of Education, Culture, Sports, Science and Technology, the budget includes 20M-USD(1USD=100JPY) for the COMET-phase1.
- The construction will be started from 2013.

Key Points of COMET(S.E.S 10⁻¹⁵)

Goal of COMET Phase-I

Background Study for COMET Phase-II

 direct measurement of potential background sources for the full COMET experiment by using the actual COMET beamline constructed at Phase-I

Search for µ-e conversion

 a search for µ⁻-e⁻ conversion at intermediate sensitivity which would be more than 100 times better than the SINDRUM-II limit

Results of Extinction Measurement (June, 2012)

A. Sato

proton extinction factor of 1.5 x10⁻¹¹ has been achieved.
 at MR abort line after acceleration up to 30GeV.

Next step: measurements at SX line.

Akira SATO: COMET at J-PARC

Status update Extinction measurement solution (FNAL) The results of the extinction measurements

$\mu \rightarrow e$ in the meanwhile: DeeMe

- Deeme search for $\mu 2e$ @J-Parc with a 10^{-14} sensitivity in 2015
 - Stage 1 approved in 2011
- Production target is also the conversion target (SiC to have high-Z material)
 - j-Parc H-beam line

H-line Construction Status

H-line is multipurpose beamline

- •DeeMe
- •g-2/EDM
- muonium HFS
- ${\scriptstyle \bullet\, \mu \, \text{CF}}$ and other muon programs

Front-end magnets are already fabricated.

SiC Rotating Target

- Extremely important to increase the physics sensitivity:
 - $f_C \times f_{MC} = 0.08(C), 0.46(SiC).$
 - proton loss: 5% → ~10%
 Discussion with neutron group is ongoing
- Development of a graphite rotating target has almost completed. It will be installed in the summer 2013.
- Build another one with SiC fins instead of graphite fins; planning to install in 2014.

graphite fins

rotating target module

J-parc muon facilities

- U-beam line is under construction
 - Curved solenoid tested and installed

Yutaka Ikedo

Novel beam lines

- MuSIC at Osaka University
- Produce 10^{8÷9} μ/sec with only 400W p-beam

Akira Sato

Akira Sato

Schedule Muon storage ring 位相空間回転システム Matching and FFAG電磁石 Pion and muon injection system transport solenoid 2015 JPY ミューオン蓄積FFAGリング 2013-2014 JPY 偏向電磁石 88 U, ステアリング電磁石 Constructed in 2009 JPY **Mathematical and operated** 2015-2016 JPY **Proton beam line** Pion capture solenoid * The schedule depends on 10000 the budget situation. 7 9 MuSIC - Status and Prospects -, 2012/07 Akira SATO

- muonic x-rays
- muon lifetime (capture in Copper)
- Extrapolate at high proton beam
 - can the target survive? Yes!

Results from muonic X-ray

Terminal Temperature

The coil temperature up to ~6.5K is acceptable. MuSIC can work with 400W proton beam. Akira Sato

Question for MUSIC:

Which is the spectrum Which is the rate as a function of p Which is the polarization Possible experiments in the beamline Pion and Muon transport solenoid status

The Future

- Project-X, PRISM/PRIME
 - µ2e to 3 x 10⁻¹⁹
 - to have more muons \rightarrow forward capture and cool
 - at the limit of technology for B intensity, radiation etc...

See WG3+4 joint session talks

C. Ankenbrandt, V. Blackmore, J. Pasternak, T. Luo...

The Future

Questions to NUFACT 2013

- PSI
 - MEG New results & Upgrade
 - µ→eee
- µ-e conversion
 - Mu2e
 - COMET Phase I & II
 - DeeMe
- J-PARC MUSE activities : H-Line
 - Mu HFS
 - ultracold-µ production
 - g-2/EDM
- FNAL g-2
- T-sector
 - combined Belle and BaBar results
 - Prospects for Belle-II and SuperB
- Precision tests
 - cross sections (MuSUN)
 - news on proton radius

- R&D of intense muon source
- MuSIC
- J-PARC Beam lines
- Muon production
- Muon collection / Cooling (MICE...)
- Work towards muon collider
- •p-EDM
- Beyond
 - Project-X
 - PRISM/PRIME
- Theory
- Reflect LHC results
 - Higgs
 - Supersymmetry
- Neutrino oscillation parameters
 - **9**₁₃
 - δ_{CP}

Thanks

- The Organizers
- All WG4 participants for the fruitful discussions
- My co-conveners