The NOvA Experiment Jaroslaw Nowak, University of Minnesota

International Workshop on Neutrino Factories, Super Beams and Beta Beams

July 23-28, 2012 Williamsburg, VA USA

ANL / Athens / Banaras Hindu University/ Caltech / Institute of Physics ASCR / Charles University / Cochin University / University of Delhi / FNAL / IIT Guwahati/ Harvard / University of Hyderabad/ IIT Hyderabad / Indiana / Iowa State / University of Jammu/ Lebedev / Michigan State/ Minnesota, Crookston / Minnesota, Duluth / Minnesota, Twin Cities / INR Moscow / Panjab University/ South Carolina SMU / Stanford / Tennessee / Texas, Austin / Tufts / Virginia / WSU / William & Mary

NOvA Experiment

- Use the upgraded NuMI beam at Fermilab.
- Construct a totally active liquid scintillator detector off the main axis of the beam.
 - Far detector is 14 mrad off- axis and on the surface.
 - Near detector is also 14 mrad off-axis but underground.
 - Location reduces background.

2nd generation Long baseline

 If neutrinos oscillate, electron neutrinos are observed at the Far Detector in Ash River, 810 km away. J.Nowak, NOvA Experiment

Neutrino oscillations basics

- The flavor eigenstates are linear combinations of the mass eigenstates.
- There is a non-zero probability of detecting a

$$|\mathbf{v}_{\alpha}\rangle = \sum_{k=1}^{n} U_{\alpha k} |\mathbf{v}_{k}\rangle \quad (\alpha = e, \mu, \tau)$$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27 \Delta m_{23}^2 L}{E_{\nu}}\right)$$

different neutrino flavor than that produced at the source.

For the three flavor case we can write a PMNS mixing matrix:

$$\mathbf{U} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos \theta_{23} & \sin \theta_{23} \\ \mathbf{0} & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & \mathbf{0} & \sin \theta_{13} e^{-i\delta} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin \theta_{13} e^{i\delta} & \mathbf{0} & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & \mathbf{0} \\ -\sin \theta_{12} & \cos \theta_{12} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

NOvA physics goals

- Measure the oscillation probabilities of
- $v_{\mu} \rightarrow v_{e} \text{ and } \overline{v}_{\mu} \rightarrow \overline{v}_{e}.$
 - Measure the mixing angle θ_{13} .
 - Determine neutrino mass hierarchy.
 - Study the phase parameter for CP violation δ_{CP}
- Precision measurements of Δm_{32}^2 , θ_{23} by measuring $v_{\mu} \rightarrow v_{\mu}$
- As well as:
 - v cross sections.
 - Sterile neutrinos.
 - Supernova signals.
 - Non-oscillation measurements(e.g. Magnetic Monopoles, neutrino magnetic moment).

The NOvA detectors

- 14 kton Far Detector
 - >70% active detector.
 - 360,000 detector cells read by APDs.
- 0.3 kton Near Detector

0.2 kton

- 18,000 cells (channels).
- Each plane just 0.15 X_0 . Great for $e^- vs \pi^0$.

32*-*pixel APD

Both ends of a fiber to one pixel

MC Events in NOvA

Excellent granularity for a detector of this scale

 $X_0 = 38$ cm (6 cell depths, 10 cell widths)

Beneficial occupancy of Ash River laboratory on April 13, 2011

NOvA construction status

- Far Detector site construction is now complete.
 - The block pivoter is installed at the site.
 - Far Detector first block installation begins this month!
- Upgrade NuMI beam from
 - 350 kW to 700kW initiated May 1, 2012.
- Near Detector cavern excavation and assembly during shutdown.
 - Changed to 96 x 96 cell design to improve event containment.

J.Nowak, NOv

NOvA construction status

 First layer of modules is permanently placed on the pivoter table at Ash River, MN - July 26, 2012

Accelerator and NuMI Upgrades

Taking the NuMI source from ~350 kW to 700 kW

- Year-long accelerator shutdown underway (since May 1)
- Turn Recycler from antiproton to proton ring injection & extraction lines, associated kickers & instrumentation, 53 MHz RF
- Shorten Main Injector cycle from 2.2 seconds to 1.33 seconds RF upgrades, power supply upgrades
- Overhaul of NuMI target station for 700 kW running

Beam to return May 2013.
Six month ramp-up to 700 kW.
Event rate vs. E_ν at various angles relative to the NuMI beam axis NOvA :

14 mrad \rightarrow spectrum peaks sharply at 2 GeV

Prototype Near Detector

"NDOS" (Near Detector on Surface)

- Component production, installation, and integration tests and adjustments
 - DAQ development
 - Calibration, simulation, reconstruction development using real data
 - Flux and cross sections

NOvA Near Detector Prototype

- Near Detector Prototype installed on surface at Fermilab.
- 5000 neutrino events from the NuMI beam observed.
- Neutrino candidate data matches well to Monte Carlo.

Events from the NuMI beam seen at 110 mrad

- Data is useful for detector operations.
- Benchmarking calibration, reconstruction and simulations.

The status of θ_{13}

 This year we will go from not knowing this parameter at all to having measured it down to 8%.

Mild preference for inverted hierarchy.

Electron neutrino appearance in NOvA

The probability of V_e appearance in a V_u beam:

- Searching for v_e events in NOvA, we can access sin²(2 θ_{13}).
- Probability depends not only on θ_{13} but also on δ_{CP} , which might be the key to matter anti-matter asymmetry of the universe. For large θ_{13} , a measurement could be possible.
- Probability is enhanced or suppressed due to matter effects which depend on the mass hierarchy i.e. the sign of $\Delta m_{31}^2 \sim \Delta m_{32}^2$ as well as neutrino vs. anti-neutrino running.

Electron neutrino appearance in NOvA

• The probability of v_e appearance in a v_u beam:

Beam Plots by M. Bishai

NOvA exposure in early running

- NOvA will turn on April 2013 with 5 kton of Far detector in place and beam operating at ~ 400 kW
- We will add detector mass at a rate of ~ 1 kton/month
- Beam intensity will ramp up to 700 kW in approximately 6 months from 400 kW.

Using earlier analysis methods optimized for $sin^2(2\theta_{13}) = 0.095$. Signal eff: 45% and NC fake rate ~1%.

NOvA early reach

- We will start with neutrino running:
 - 5σ observation of V_µ → V_e in first year if normal hierarchy (even with partial detector and beam commissioning!)
- Switch to anti-neutrino running as needed.
- Nominal run plan 3 years in each mode at 6 x 10²⁰ POT

Beam	signal	Total Bkgd	NC bkgd	v_{μ} CC bkgd	v _e CC bkgd
neutrino	68	32	19	5	8
antineutrino	32	15	10	<1	5
Jowak NOvA Experiment					18

NOvA physics

NOvA will measure: $P(V_{\mu} \rightarrow V_{e})$ at 2 GeV and $P(anti-V_{\mu} \rightarrow anti-V_{e})$ at 2 GeV

Now we know $\theta_{13} \sim 9$ degrees

NOvA physics

NOvA will measure: $P(V_{\mu} \rightarrow V_{e})$ at 2 GeV and $P(anti-V_{\mu} \rightarrow anti-V_{e})$ at 2 GeV

Large θ_{13} is good news for NOvA. It reduces the overlap between these bi-probability ellipses, reducing the likelihood of degeneracies

NOvA physics

Example NO\nuA result

Our data will yield allowed regions in P(anti- $\nu_{\rm e}$) vs. P($\nu_{\rm e}$) space

A measurement of the probabilities might allow resolving the mass hierarchy and provide information on $\delta_{\rm CP^*}$

Resolution of the mass hierarchy

- Significance of mass hierarchy resolution using a sample counting experiment.
- Energy fit provides improvement on the fully degenerate δ_{CP} values.

We can also gain additional sensitivity from T2K's baseline.

Resolution of the mass hierarchy

- Significance of mass hierarchy resolution using a sample counting experiment.
- Energy fit provides improvement on the fully degenerate δ_{CP} values.

We can also gain additional sensitivity from T2K's baseline.

NOvA muon neutrino disappearance

- NOvA's will do a few % measurement in Δm_{32}^2 and $\sin^2 2\theta_{23}$.
- Improvement of one order of magnitude in $sin^2 2\theta_{23}$.
- It might not be maximal.

Non-maximal $sin^2 2\theta_{23}$

 $P(v_e) \propto \sin^2(\theta_{23}) \sin^2(2\theta_{13})$

 $\Rightarrow \theta_{23}$ octant sensitivity

If $\sin^2 2\theta_{23}$ is not maximal there is an ambiguity as to whether θ_{23} is larger or smaller than 45°.

The $\sin^2 2\theta_{23}$ term is unimportant when comparing accelerator experiments; however, it is crucial in comparing accelerator to reactor experiments

Non-maximal $sin^2 2\theta_{23}$

If $\sin^2 2\theta_{23}$ is not maximal there is an ambiguity as to whether θ_{23} is larger or smaller than 45°.

The $\sin^2 2\theta_{23}$ term is unimportant when comparing accelerator experiments; however, it is crucial in comparing accelerator to reactor experiments

Non-maximal $\sin^2 2\theta_{23}$ and NOvA

Expected contours for one example scenario using 3 years of data for each neutrino mode.

Simultaneous hierarchy, CP phase, and θ_{23} octant information from NOvA

Non-maximal $\sin^2 2\theta_{23}$ and NOvA

Expected contours for one example scenario using 3 years of data for each neutrino mode.

In "degenerate" cases, hierarchy and δ information is coupled. θ_{23} octant information is not.

Summary

- There is now **definite evidence** that θ_{13} angle is as large as we could have hoped for.
- NOvA program \rightarrow mass hierarchy, $\delta_{\rm CP}$, $\theta_{23} \rightarrow$ broad range of ν -sector measurement
- NOvA FD assembly underway at Ash River!
 - NuMI upgrades underway → 700 kW
 - First neutrino events in the partial FD next Spring
 - NDOS run: → commissioning, cosmic ray, and neutrino data → invaluable for assembly practice and analysis development
- Actively developing analyses for 1st FD data → aiming to surpass the sensitivities shown in this talk

