

Beta Beams Options Studies T.M. Mendonça, T. Stora, E. Wildner

Outline

General concept
Layout of the facility
Physics reach
Motivation and challenges

Recent results: production of baseline ions production of high Q ions Ion source acceleration decay ring

The Beta Beams Concept

Aim: Production of pure (anti)-ν_e beams by storing β emitting ions in a decay ring
 Accelerate ions to relativistic γ_{max}
 Use of existing CERN machines and infrastructures

The Beta Beams

Decay Ring, Beta Beams

Physics reach from Euronu Precision and CP violation

-SPL+BB at Frejus is competitive

 For large values of θ13, measurement of δ is very dependent on assumed systematics

Baselines larger than Frejus reach 5 σ

P. Coloma, E. Fernández-Martínez

Motivation & Challenges

 Choice of radioactive ions: noble gases as best candidates – ⁶He/¹⁸Ne baseline ions Optional scenario: high-Q ⁸B/⁸Li
 Use of existing infrastructures and technology at CERN
 γ boost limited: upgrade of existing machines
 Decay ring size limited: cost related
 High intensities in the accelerators

Main activities

Production of high intensities of radioactive ions
Ion collection and source
Stability of high intensity beams through the accelerator complex
Losses and radiation management

Choice of radioactive ions

≻ Half-life

- > Noble gases: chemical stability
- > Charge-to-mass ratio for efficient acceleration
- > ⁶He/¹⁸Ne baseline ions

Optional scenario: high-Q 8B/8Li

Isotope	⁶ He	¹⁸ Ne	⁸ Li	⁸ B
Prod.	ISOL(n)	ISOL	P-Ring	P-Ring
Beam	SPL(p)	Linac4(p)	d	³ He
I [mA]	0.07	7	0.160	0.160
E [MeV]	2000	160	25	25
P [kW]	140	1120	4	4
Target	W/BeO	²³ Na, ¹⁹ F	⁷ Li	⁶ Li
r [10 ¹³ /s]	5	1	0.1	0.08

Baseline low-Q isotopes

199192

Baseline ions: ⁶He ($T_{1/2}$ =0.8 s, Q_{β_2} =3.5 MeV) and ¹⁸Ne ($T_{1/2}$ =1.67 s, Q_{β_2} =3.3 MeV) Production of anti- v_e and v_e : 3(.3)x10¹³ ⁶He/s and 2(.1)x10¹³ ¹⁸Ne/s out of the primary target (Final report, FP6 EURISOL-DS)

Production of radioactive ion beams based on the ISOL technique

High intensity ⁶He beams at ISOLDE

Release efficiency (>85% released)

Release curve provides additional information on performance of target and ion source unit

Yield determination requires measurement of entire release curve

In target rates:

✤1.3x10¹³ ⁶He/s 100kW, 40 MeV deuteron beam

✤ 2x10¹³ ⁶He/s 100kW, 1 GeV proton beam

 $1x10^{14}$ ⁶He/s 200kW, 2 GeV proton beam

M. Hass et al., J. Phys. G 35, 014042 (2008) T. Hirsch et al. PoS (NuFact08) 090

199192

T. Stora et al., Eur. Phys. Lett. 98 (3), 32001 (2012)

Production of ¹⁸Ne using molten salts: NaF:LiF Reactions: ²³Na(p,X)¹⁸Ne, ¹⁹F (p,2n)¹⁸Ne

<u> 1991):</u>

A proposal inspired from ¹⁸F production for PET imaging

Salt	Composition [mol %]	Melting point [°C]	Density [g/cm3] (700 °C)	Vapor pressure [mmHg](900°C)	Yield protons 7mA 160MeV (ions/s)
NaF-LiF	61-39	649	2.59	0.1	1.0E+013

¹⁸Ne production validation at ISOLDE

ISOLDE target unit Improved geometry for NaF:LiF

Online tests using static unit at ISOLDE:

199192

NaF:LiF target successfully tested at ISOLDE 2.8 x10⁴ ¹⁸Ne/uC with 6x10¹² ppp Data analysis ongoing

High-Q isotopes: ⁸B/⁸Li

Production of ⁸B/⁸Li using a compact ring

25 MeV Li beam interacts with gas-jet target (D or ³He) – inverse kinematics

Collection device to stop and transport ions to ECR ion source

Alternative – use of solid or liquid target in direct kinematics feasibility under study

60 GHz ECR Ion Source

T. Lamy, M. Marie-Jeanne, P. Balint, C. Fourel, J. Giraud, J. Jacob, L. Latrasse, P. Sortais, T. Thuillier, F. Debray, C. Trophime, S. Veys, C. Daversin, V. Zorin, I. Isotov, V. Skalyga

5x10¹³ atoms.s⁻¹ from the target (cw)

- > High ionization efficiencies
 - RCS cycle 10 Hz 50 μ s

16 mA ⁶He+ bunches to be extracted every 100 ms

- Mechanical design and optimization of the magnetic structure prototype
- Measurement of magnetic field map
- Experiments at 28 GHz (end of summer 2012)

PS and **SPS**

E. Benedetto, C. Hansen, E. Wildner

- Losses dominated by decay
- ✓ Losses due to charge-exchange are negligible
- ✓ Cross-sections for electron capture are very small
- Same order of magnitude as CNGS No showstopper for the project
- ✓ Tune scans in PS
- ✓ ⁶He will survive, ¹⁸Ne needs resonance compensation (PS)
- ✓ Studies on head-tail needed in the PS and the SPS

Radiation studies

Ambient Dose-Eq Rate [µSv/h] above the Ground Level

Dose Rates extracted assuming the same relative beam loss as of 10/03/2010 when 6µSv/h was measured by PAXS51

values at PAXS51: Ne-18, Ek=873.3 MeV/n: 17 μSv/h He-6, Ek=382.3 MeV/n : 3 μSv/h p, E_k=2 GeV: 49 μSv/h p, E_k=1.4 GeV: 21 μSv/h

for the full proton beam intensities of 8×10^{12} p/s (E_k=1.4 GeV) and 1.1×10^{12} p/s (E_k=2 GeV) Dose Rates highest for the proton beams than for the beta beams.

Dose Rates higher by factors of 2.3, 3, 16 for p $E_k=2$ GeV beam losses compared to H-proton $E_k=1.4$ GeV, Ne-18 and He-6, resp.

11

Decay ring A. Chancé. G. Burt, C. Hansen, E. Wildner

- Huge intensities must be stored in the DR
- Collective and head-tail effects are one of the main issues
- Some ways to mitigate head-tail effects were studied without success
- A beta beams with larger suppression factor could be the key by

relaxing the peak intensities in the DR

- Open mid-plane magnets adopted
 Injection moved from the arcs to one of long-straight sections
- Optics suited for ⁶He²⁺, ¹⁸Ne¹⁰⁺, ⁸Li³⁺ and ⁸B⁵⁺ ions

Outlook

Many progresses in the last years
 Production of required rates of ⁶He validated
 Validation of molten salts on production of ¹⁸Ne required intensities to be verified with molten salt loop
 Direct kinematics under study for ⁸B/⁸Li

60 GHz ECR ion source prototype: experimental validation at 28GHz for summer 2012
 Radiation studies show effective doses lower for beta beams than for protons

Thank you for the attention!