Neutrino Oscillation Physics Discussions

Mu-Chun Chen University of California at Irvine

NuFact 2012, Williamsburg, July 27, 2012

Where Do We Stand?

- Exciting Time in v Physics: recent hints of large θ_{13} from T2K, MINOS, Double Chooz, and Daya Bay
- Latest 3 neutrino global analysis (including recent results from reactor experiments):

$$P(\nu_a \to \nu_b) = \left| \left\langle \nu_b | \nu, \ t \right\rangle \right|^2 \simeq \sin^2 2\theta \ \sin^2 \left(\frac{\Delta m^2}{4E} L \right)$$

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.33 - 2.49	2.27-2.55	2.19 - 2.62
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.42	2.31 - 2.49	2.26-2.53	2.17 - 2.61
$\sin^2 \theta_{13}/10^{-2} \text{ (NH)}$	2.41	2.16 - 2.66	1.93 - 2.90	1.69 - 3.13
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19-2.67	1.94-2.91	1.71 - 3.15
$\sin^2 \theta_{23} / 10^{-1} \text{ (NH)}$	3.86	3.65 - 4.10	3.48 - 4.48	3.31 - 6.37
$\sin^2 \theta_{23}/10^{-1}$ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63
δ/π (NH)	1.08	0.77 - 1.36	<u> </u>	
δ/π (IH)	1.09	0.83 - 1.47	 -	

Cautions!! Different global fit analyses assume different error correlations among experiments ⇒ different results

Where Do We Stand?

The known knowns:

normal hierarchy:

inverted hierarchy:

What's Next?

Reactor Exp: Double Chooz, Daya Bay, Reno Long Baseline Exp: MINOS, NOvA, T2K, LBNE...

The known unknowns:

- How small is θ_{13} ? (v_e component of v_3)
- $\theta_{23} > \pi/4$, $\theta_{23} < \pi/4$, $\theta_{23} = \pi/4$? (ν_3 composition of $\nu_{\mu,\tau}$)
- neutrino mass hierarchy (Δm_{13}^2)?
- CP violation in neutrino oscillations?
- Majorana vs Dirac?

The unknown unknowns

Theoretical Challenges

- (i) Absolute mass scale: Why $m_v \ll m_{u,d,e}$?
 - seesaw mechanism: most appealing scenario ⇒ Majorana
 - GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
 - TeV scale new physics (extra dimension, U(1)) ⇒ Dirac or Majorana
- (ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
 - seesaw doesn't explain entire mass matrix w/ 3 fairly large mixing angles
 - <u>neutrino anarchy</u>: no parametrically small number

Hall, Murayama, Weiner (2000); de Gouvea, Murayama (2003)

- near degenerate spectrum, large mixing
- predictions strongly depend on choice of statistical measure
- <u>family symmetry</u>: there's a structure, expansion parameter (symmetry effect)
 - mixing determined by dynamics of underlying symmetry
 - for leptons only (normal or inverted)
 - for quarks and leptons: quark-lepton connection ↔ GUT (normal)

Questions to be discussed

- precision in oscillation parameters needed to distinguish different models
 - theoretical frameworks; testable predictions
 - robustness of the model predictions?
 - theoretical uncertainties
 - ⇒ Talk by Michael Ratz
- constraining the three neutrino paradigm
 - implications for new interactions
 - ⇒ Talk by Jacobo Lopez-Pavon

Small Neutrino Mass: Seesaw Mechanism

Mixture of light fields and heavy fields

Yanagida, 1979; Gell-Mann, Ramond, Slansky, 1979; Mohapatra, Senjanovic, 1981

$$\begin{pmatrix} \mathbf{v}_L & \mathbf{v}_R \end{pmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{m}_D \\ \mathbf{m}_D & \mathbf{M}_R \end{pmatrix} \begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R \end{pmatrix}$$

v_R: sterile (singlet under ALL gauge groups in SM)v_Rv_R mass term allowed

Diagonalize the mass matrix:

$$m_{_{m V}} \sim m_{_{light}} \sim rac{m_{_{m D}}^2}{M_{_{m R}}} << m_{_{m D}}$$
 $m_{_{heavy}} \sim M_{_{m R}}$

 Smallness of neutrino masses suggest a high mass scale

For
$$m_{V_3} \sim \sqrt{\Delta m_{atm}^2}$$
If $m_D \sim m_t \sim 180~GeV$

Grand Unification

Motivations:

- Electromagnetic, weak, and strong forces have very different strengths
- But their strengths become the same at 10¹⁶ GeV if there is supersymmetry
- To obtain

$$m_{\nu} \sim (\Delta m^2_{atm})^{1/2}, m_D \sim m_{top}$$

$$M_B \sim 10^{15} \text{ GeV}$$

coupling constants run!

Origin of Mass Hierarchy and Mixing

- In the SM: 22 physical quantities which seem unrelated
- Question arises whether these quantities can be related
- No fundamental reason can be found in the framework of SM
- less ambitious aim ⇒ reduce the # of parameters by imposing symmetries

- GUT relates quarks and leptons: quarks & leptons in same GUT multiplets
 - one set of Yukawa coupling for a given GUT multiplet ⇒ intra-family relations
- seesaw mechanism naturally implemented
- proton decay, leptogenesis, LFV charged lepton decay
- Family Symmetry
 - relate Yukawa couplings of different families
 - inter-family relations ⇒ further reduce the number of parameters

⇒ Experimentally testable correlations among physical observables

Origin of Mass Hierarchy and Mixing

- Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Family Symmetries G_F based on continuous groups:
 - U(1)
 - SU(2)
 - SU(3)

Recently, models based on discrete family symmetry groups have been constructed

Motivation: Tri-bimaximal

(TBM) neutrino mixing

- A₄ (tetrahedron)
- T´ (double tetrahedron)
- S₃ (equilateral triangle)
- S₄ (octahedron, cube)
- A₅ (icosahedron, dodecahedron)
- \bullet Δ_{27}
- Q₄

Tri-bimaximal Neutrino Mixing

Neutrino Oscillation Parameters

$$P(\nu_a \to \nu_b) = \left| \left\langle \nu_b | \nu, \ t \right\rangle \right|^2 \simeq \sin^2 2\theta \ \sin^2 \left(\frac{\Delta m^2}{4E} L \right)$$

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Latest Global Fit (3σ)

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, 2012

$$\sin^2 \theta_{atm} = 0.386 \ (0.331 - 0.637)$$
 $\sin^2 \theta_{\odot} = 0.307 \ (0.259 - 0.359)$ $\sin^2 \theta_{13} = 0.0241 \ (0.0169 - 0.0313)$

Tri-bimaximal Mixing Pattern

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix} \qquad \sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3 \\ \sin \theta_{13, \text{TBM}} = 0.$$

 Leading Order: TBM (from symmetry) + Corrections/contributions (dictated by symmetry)

An Example: a SUSY SU(5) x T´ Model

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007)

- Double Tetrahedral Group T´
 - may arise from extra dimensions
- Symmetries ⇒ 9 parameters in Yukawa sector ⇒ 22 physical observables
 - neutrino mixing angles from group theory (CG coefficients)
 - TBM: misalignment of symmetry breaking patterns
 - neutrino sector: T' → G_{TST2}, charged lepton sector: T' → G_T
 - GUT symmetry \Rightarrow deviation from TBM related to quark mixing θ_c
 - complex CG's of T´ ⇒ Novel Origin of CP Violation

 M.-C.C, K.T. Mahanthappa,
 Phys. Lett. B681, 444 (2009)
 - CP violation in both quark and lepton sectors entirely from group theory
 - connection between leptogenesis and CPV in neutrino oscillation

Predictions: a SUSY SU(5) x T´ Model

Charged Fermion Sector (7 parameters)

$$M_{u} = \begin{pmatrix} ig & \frac{1-i}{2}g & 0 \\ \frac{1-i}{2}g & g + (1-\frac{i}{2})h & k \\ 0 & k & 1 \end{pmatrix} y_{t}v_{u}$$

$$V_{cb} \qquad M_{d}, M_{e}^{T} = \begin{pmatrix} 0 & (1+i)b & 0 \\ -(1-i)b & (1,-3)c & 0 \\ b & b & 1 \end{pmatrix} y_{b}v_{d}\phi_{0}$$

$$M_{d}, M_{e}^{T} = \begin{pmatrix} 0 & (1+i)b & 0 \\ -(1-i)b & (1,-3)c & 0 \\ b & b & 1 \end{pmatrix} y_{b}v_{d}\phi_{0}$$

$$V_{ub}$$

spinorial representations \Rightarrow complex CGs ⇒ CPV in quark sector

quark CP phase: $\gamma = 45.6$ degrees

Georgi-Jarlskog relations at GUT scale $\Rightarrow V_{d,L} \neq I$

$$m_d \simeq 3m_e \qquad m_\mu \simeq 3m_s$$

$$SU(5) \Rightarrow M_d = (M_e)^T$$

 \Rightarrow corrections to TBM related to θ_c

$$\theta_c \simeq \left| \sqrt{m_d/m_s} - e^{i\alpha} \sqrt{m_u/m_c} \right| \sim \sqrt{m_d/m_s},$$

$$\theta_{12}^e \simeq \sqrt{\frac{m_e}{m_\mu}} \simeq \frac{1}{3} \sqrt{\frac{m_d}{m_s}} \sim \frac{1}{3} \theta_c$$

Predictions: a SUSY SU(5) x T´ Model

Neutrino Sector (2 parameters):

$$M_{RR} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} S_0 \qquad M_D = \begin{pmatrix} 2\xi_0 + \eta_0 & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & -\xi_0 + \eta_0 \\ -\xi_0 & -\xi_0 + \eta_0 & 2\xi_0 \end{pmatrix} \zeta_0 \zeta_0' v_u$$

Seesaw mechanism:

$$U_{TBM}^{T} M_{\nu} U_{TBM} = \operatorname{diag}((3\xi_0 + \eta_0)^2, \eta_0^2, -(-3\xi_0 + \eta_0)^2) \frac{(\zeta_0 \zeta_0' v_u)^2}{s_0 \Lambda}$$

Prediction for MNS matrix:

$$U_{\text{MNS}} = V_{e,L}^{\dagger} U_{\text{TBM}} = \begin{pmatrix} 1 & -\theta_c/3 & * \\ \theta_c/3 & 1 & * \\ * & * & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \quad \boxed{\theta_{13} \simeq \theta_c/3\sqrt{2}}$$

 δ = 227 degrees

⇒ connection between leptogenesis & leptonic CPV at low energy

sum rule among absolute masses:

$$m_2^2 - m_1^2 = (\eta_0^4 - (3\xi_0 + \eta_0)^4) \frac{(\zeta_0 \zeta_0' v_u)^2}{S_0} > 0$$

$$m_3^2 - m_1^2 = -24\eta_0 \xi_0 (9\xi_0^2 + \eta_0^2) \frac{(\zeta_0 \zeta_0' v_u)^2}{S_0}$$

Sum Rules: Quark-Lepton Complementarity

Quark Mixing

ا ۵	nto	n M	ivi	na
	ριυ	1111	IVI	ΠŊ

mixing parameters	best fit	3 σ range
$\mathbf{\theta}^{q}_{23}$	2.36°	2.25° - 2.48°
0 ^q ₁₂	12.88°	12.75° - 13.01°
0 ^q 13	0.21°	0.17° - 0.25°

mixing parameters	best fit	3 σ range
$oldsymbol{ heta}_{23}^{ ext{e}}$	42.8°	35.5° - 53.5°
θ ^e ₁₂	34.4°	31.5° - 37.6°
θ ^e ₁₃	5.6°	≤ 12.5°

• QLC-I
$$\theta_{c} + \theta_{sol} \approx 45^{\circ}$$
 Raidal, '04; Smirnov, Minakata, '04

(BM)

$$\theta^{q}_{23} + \theta^{e}_{23} \cong 45^{\circ}$$

measuring leptonic mixing parameters to the precision of those in quark sector

• QLC-II
$$\tan^2\theta_{sol} \approx \tan^2\theta_{sol,TBM} + (\theta_c/2) * \cos \delta_e$$

$$\theta^{e}_{13} \cong \theta_{c}/3\sqrt{2}$$

 $\theta_{13} \cong \theta_{c} / 3\sqrt{2}$ Ferrandis, Pakvasa; King; Dutta, Mimura; M.-C.C., Mahanthappa

testing sum rules: a more robust way to distinguish different classes of models

need improved δθ₁₂ measurement

Other Possibilities: Beyond TBM

- Tri-bimaximal Mixing Accidental or NOT? Albright, Rodejohann (2009); Abbas, Smirnov (2010)
- Dodeca Mixing Matrix from D₁₂ Symmetry

leading order:

$$\theta_{\rm c} = 15^{\rm o}, \; \theta_{\rm sol} = 30^{\rm o}, \; \theta_{\rm atm} = 45^{\rm o}$$

breaking of D₁₂:

$$\theta_{c} = 15^{\circ} \rightarrow 13.4^{\circ}$$

$$\theta_{sol} = 30^{\circ} + O(\epsilon), \ \theta_{13} = O(\epsilon)$$

J. E. Kim, M.-S. Seo, (2010)

$$V_{\text{PMNS}} = U_l^{\dagger} U_{\nu} = \begin{pmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} & 0\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\sin\frac{\pi}{6} & \frac{1}{\sqrt{2}}\cos\frac{\pi}{6} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\theta_{c} + \theta_{sol} = 45^{\circ}$$
 (not from GUT symmetry)

deviations correlated

Golden Ratio for solar mixing angle

• prediction for θ₁₃ model/parameter dependent

Correlations: Charged Lepton Flavor Violation

SUSY GUTs: Lepton flavor violating charged lepton decays

- ▶individual branching fraction: strong dependence on soft SUSY parameters
- ▶ correlations between branching fractions: strong dependence on flavor structure

Correlations: Charged Lepton Flavor Violation

• five viable SUSY SO(10) models with dark matter constraints:

C.H. Albright, M.-C.C (2008)

Correlations: Sparticle Decay and Mixing Angle

MSSM with bi-linear R-Parity Violation

Kaplan, Nelson, 1999

$$\mathcal{W}_R = \epsilon_i \hat{L}_i \hat{H}_u$$

mass generation for Δm_{atm}²:

mixing angle ↔ neutralino decay:

Mukhopadhyaya, Roy, Vissani, 1998

$$\tan^2 \theta_{\rm atm} \simeq \frac{BR(\tilde{\chi}_1^0 \to \mu^{\pm} W^{\mp})}{BR(\tilde{\chi}_1^0 \to \tau^{\pm} W^{\mp})}$$

Conclusions

• precise measurements of oscillation parameters important for pinning down underlying new physics

C.H. Albright (2009); C. H. Albright, M.-C. C (2006)

Conclusions

- we are not just testing a number, but rather a paradigm like in the case of CKM matrix
- Testing correlations: robust way to distinguish different classes of models
 - correlations among neutrino mixing parameters
 - sum rules among quark and lepton mixing parameters
 - correlations among other flavor violating processes

Q: What accuracy do we need in oscillation parameters in order to distinguish different models?

Q: What precisions can be achieved experimentally in measuring θ_{13} , θ_{23} , θ_{12} ?

Q: Is Tri-bimaximal mixing pattern still viable?

Q: What precisions can be achieved experimentally in measuring θ_{13} , θ_{23} , θ_{12} ? to exclude TBM pattern?

Q: Can we ever exclude it?

Q: What precision do we need in CP phase?

Q: Given the large value of θ_{13} , what precision can be achieved experimentally in measuring the CP phase?

Q: How seriously should we take the hints of sterile neutrinos (or something else) from LSND/MiniBooNE, reactor, radioactive source, or cosmological data?

Q: How far should we go and find out what is going on?

[B. Kayser @ GGI What's Nu?]

Q: In what sense do we need to constrain the three neutrino paradigm? What type of new physics can we constrain?

Q: What experimental precision do we need to establish three neutrino paradigm?