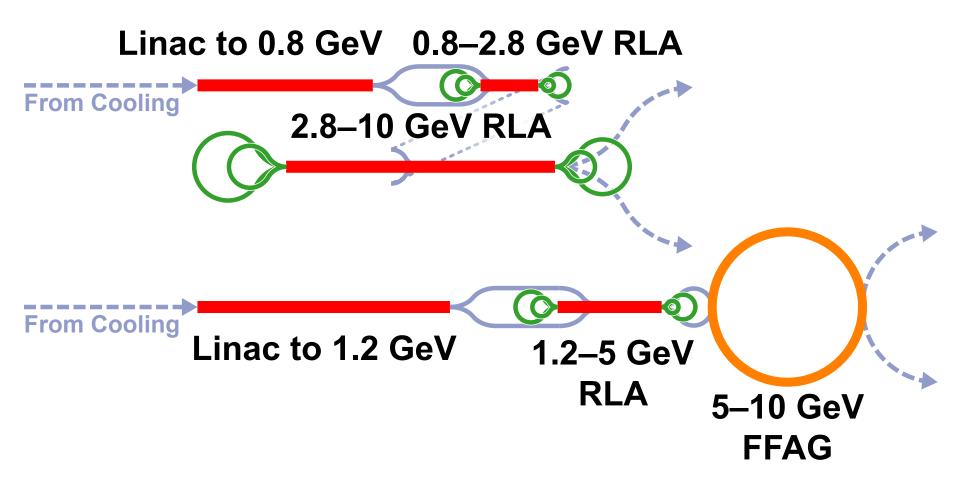


IDS-NF Acceleration Scenario Discussion Summary

J. Scott Berg
Brookhaven National Laboratory
NuFact 2012
July 27, 2012

Basic Question



- Acceleration to 10 GeV
- Two possible acceleration scenarios
 - \bullet Linac \rightarrow RLA \rightarrow RLA
 - Linac \rightarrow RLA \rightarrow FFAG
- Cost neutral when breakpoints are
 - Linac $\rightarrow 0.8 \text{ GeV} \rightarrow \text{RLA} \rightarrow 2.8 \text{ GeV} \rightarrow \text{RLA}$
 - Linac \rightarrow 1.2 GeV \rightarrow RLA \rightarrow 5.0 GeV \rightarrow FFAG
- No clear performance advantage of either system
 - FFAG has known tracking issues, but comparable issues have not been verified in Linac → RLA chain.
- Choice is "gut feeling"
 - Additional type of system (FFAG) may increase operational difficulty

Acceleration Scenarios

Energy Breakpoints

- 4 GeV is a good breakpoint for physics
- We decided to choose this for a breakpoint
 - Linac/RLA work can begin since first two stages independent of choice for last stage
 - Though may have longitudinal matching differences depending on last stage
- Question: can we still get 4.5 RLA passes with reduced energy range in final stage?

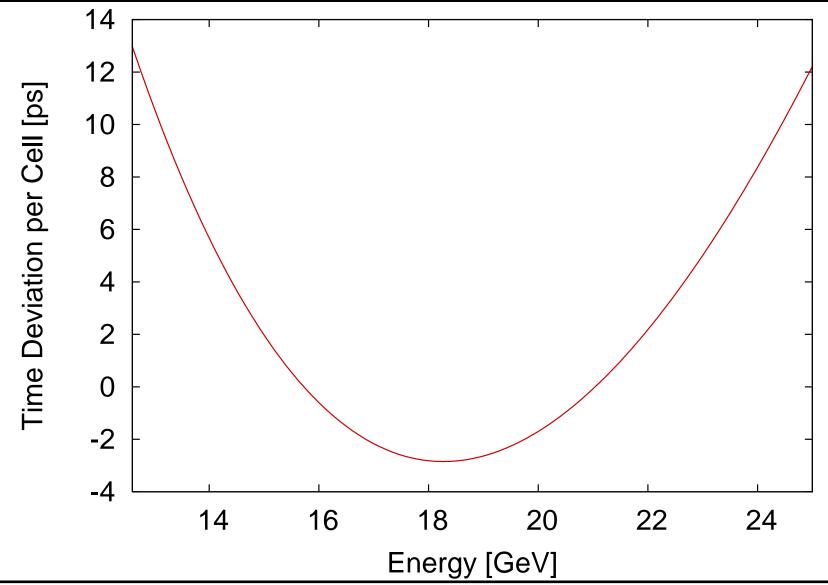
Points of Disagreement

- Can one get more turns than I specify and still have reasonable longitudinal behavior?
 - Can adding nonlinearities allow more turns?
 - Without impacting dynamic aperture too much!
- Is the additional cost of increased FFAG range offset by the reduced cost of earlier stages?
- Can adding nonlinearities improve nonlinear longitudinal/transverse coupling to the extent that we can get away with less RF voltage per cell?
- Extensive design and simulation work required
- Agreed to deadline of beginning of January to do calculations and decide.

Quick 4–10 GeV FFAG Design

Min Energy (GeV)	5	4
Max Energy (GeV)	10	10
Long drift (m)	4.3	4.3
Cells	55	83
Cavities	38	66
Turns	6.4	4.1
Circumference	492	742
Max D field (T)	3.9	2.8
D radius (mm)	175	203
Max F field (T)	3.0	2.4
F radius (mm)	205	241
Energy gain/cell (MV)	14.2	17.4
Cost (A.U.)	130	206

Quick 4–10 GeV FFAG Design



- Big penalty from increasing time of flight range
- Results because increased energy range results in increased time of flight range
 - Time of flight quadratic function of energy deviation
 - Scaling seems worse than I expected
 - Scaling naively expected product of cell ratio and inverse turn ratio to be about 1.6.
 - Maybe increasing energy on low side was the problem
 - Hope to reduce time range with nonlinearities

Quick 4–10 GeV FFAG Design

Cost Estimates

	RLA	FFAG	RLA	FFAG
Min E	2.8 GeV	5 GeV	4 GeV	4 GeV
Linac	10.0	14.0	12.0	12.0
RLA 1	14.8	22.5	19.2	19.2
RLA 2	35.8		29.8	
FFAG		23.3		36.9
	60.7	59.8	61.0	68.1

- Costs difference still a wash within errors
- No serious penalty for breakpoint change for RLAs
 - Assuming 4.5 turns possible in RLA 2
- But FFAG going the wrong way