MiniBooNE

Ž. Pavlović Los Alamos National Laboratory

> NuFact12, 24th July 2012 Williamsburg, VA

LSND

- Evidence for oscillations at higher Δm² than atmospheric and solar
- Stopped pion beam

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\rightarrow e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$

- Excess of $\overline{\nu}_{\!_{e}}$ in $\overline{\nu}_{\!_{\mu}}$ beam
- \overline{v}_e signature: Cherenkov light from e⁺ with delayed n-capture
- Excess= $87.9 \pm 22.4 \pm 6 (3.8\sigma)$

LSND signal

Assuming two neutrino oscillations

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27 L \Delta m^{2}}{E}\right)$$

= 0.245 ± 0.067 ± 0.045 %

 Can't reconcile LSND result with atmospheric and solar neutrino using only 3 Standard Model neutrinos – only two independent mass splitings

MiniBooNE experiment

- Similar L/E as LSND
 - MiniBooNE ~500m/~500MeV
 - LSND ~30m/~30MeV
- Horn focused neutrino beam (p+Be)
 - Horn polarity → neutrino or anti-neutrino mode
- 800t mineral oil Cherenkov detector

Data

Data taking: 2002-2012

Total POT 19.8x10²⁰

• Neutrino: 6.5x10²⁰

Antineutrino: 11.3x10²⁰

10 years of running

- Detector and beam extremely stable
- Neutrino/POT within 2%
- Detector calibration stable at 1% level

Calibration Sources

Predicted neutrino flux (MC)

Neutrino mode

$$\begin{array}{ccc}
 v_{\mu} & 93.6\% \\
 v_{\mu} & 5.8\% \\
 v_{e} + \overline{v}_{e} & 0.6\%
 \end{array}$$

Anti-neutrino mode

$$\frac{v_{\mu}}{v_{\mu}}$$
15.7%
83.7%
 $\frac{v_{\mu}}{v_{\mu}} + \frac{v_{\mu}}{v_{\mu}}$
0.6%

Phys. Rev. D79, 072002 (2009)

Events in MB

- · Identify events using timing and hit topology
- Use primarily Cherenkov light

Background prediction

 Similar backgrounds in neutrino and antineutrino mode

Background prediction

• Intrinsic $v_{_{
m e}}$

• External measurements - HARP p+Be for π^{\pm}

 Fits to world K⁺/K⁰ data and Sciboone K⁺ constraint

Phys. Rev. D79, 072002 (2009) Phys. Rev. D84, 012009 (2011)

 Constrained with MiniBooNE data

ν_e background prediction

Phys. Rev. D81, 013005 (2010)

$\nu_{\rm e}$ background prediction

$\nu_{\rm e}$ background prediction

$v_{\rm e}$ background prediction

Dirt:

- Events at high R pointing toward center of detector
- MiniBooNE measurement

Oscillation Fit Method

Maximum likelihood fit:

$$-2\ln(L) = (x_1 - \mu_1, ...x_n - \mu_n)M^{-1}(x_1 - \mu_1, ...x_n - \mu_n)^T + \ln(|M|)$$

- Simultaneously fit
 - v_e CCQE sample
 - High statistics v_{μ} CCQE sample
- v_{\parallel} CCQE sample constrains many of the uncertainties:

Cross section uncertainties

What's new since last oscillation publication?

- In situ measurement of WS contamination in anti-v beam
 - v_{μ} CCQE angular fit, and new constrain from CC π + rate...good agreement with

- New SciBooNE constraint on intrinsic v_e from K+
 - Found K+ production to be 0.85 ± 0.12 relative to prediction, consistent with prior MiniBooNE assessment of 1.00 ± 0.30
 - Combined with world K+ production data, reduces error on K+ flux to 9% in MB En range
 - Leading error on K+ bkgs becomes ~20% error from cross-section

Muon Angle (degrees) Phys.Rev.D84,012009 (2011)

What's new since last oscillation publication?

- Few other minor updates...
 - Higher stats for all MC samples, reduces fluctuations in error matrices
 - Added error matrix for intrinsic v_e from K-
 - Improved smoothing algorithm that was being used to assess systematics due to discriminator thresholds and PMT response
 - CC π + events (bkg for ν_{μ} CCQE when π + is absorbed) Q² reweighting applied based on internal MB measurement

Main improvement...doubling of anti-v stats

- Statistics of anti-neutrino running has doubled since *Phys.Rev.Lett.* 105 181801 (2010)
 - 5.66e20 POT --> 11.3e20 POT
 - higher statistics in anti-v_e appearance
 - …and samples used for constraints

Updated Neutrino Appearance results

- Excess (200-1250 MeV): 146.3±28.4±40.2
- Some tension between 3+1 model fits in two energy regions (1.4% probability to see 3.73→13.24 when including low E)

ν mode	E > 200 MeV	E > 475 MeV
χ²(null)	22.81	6.35
Prob(null)	0.5%	36.6%
$\chi^2(bf)$	13.24	3.73
Prob(bf)	6.12%	42.0%

90% CL

What can we say about low-E excess

- Not a stat fluctuation, statistically 6σ
- Unlikely to be intrinsic v_e , small bkg at low E
- NC π^0 background dominates
 - Reduces significance to 3σ
 - Heavily constrained by NC π^0 in situ measurement
- Region where single γ can contribute
- MB ties $\Delta \rightarrow N\gamma$ expected rate to be 1% of measured NC π^0 rate
 - Number of theory calculations for various single γ processes
 - All find total cross section within 20% of MB ~5x10⁻⁴² cm²/N
 - Would need nearly 300% change

R. Hill, arxiv:0905.0291 Jenkins & Goldman, arxiv:0906.0984 Serot & Zhang, arxiv:1011.5913 Antineutrino Appearance results 11.3x10²⁰ POT

- Excess (200-1250 MeV):78.2±20.0±23.4
- No tension between fits in two energy regions
- Caveat: WS v_{μ} assumed not to oscillate

anti-v mode	E > 200 MeV	E > 475 MeV
χ²(null)	16.6	7.8
Prob(null)	5.4%	24.6%
$\chi^2(bf)$	4.8	3.3
Prob(bf)	67.1%	49.2%

L/E dependence

- Model independent look at the data
- The excess as a function of L/E in MiniBooNE neutrino, antineutrino and LSND data consistent

Combined ν and $\overline{\nu}$ analysis

- Consistent treatment of WS
- Full correlated systematic error matrix
- Excess (200-1250): 240±34.5±52.6 (3.8σ)
- Best Fit preferred over null at 3.6σ

combined	E > 200 MeV	E > 475 MeV
χ²(null)	42.53	12.87
Prob(null)	0.1%	35.8%
$\chi^2(bf)$	24.72	10.67
Prob(bf)	6.7%	35.8%

3+2 model

- Allows CP violation
- Fits better the shape of MiniBooNE excess
- Better fit to world data (see for example arxiv:1207.4765 for recent global fit)

Conclusion

- MiniBooNE observes an excess of nue candidates in the 200-1250 MeV energy range in neutrino mode (3.0σ) and in anti-neutrino mode (2.5σ)
- The combined excess is 240±34.5±52.6 (3.8σ)
- Some tensions in data within simple 2 neutrino oscillation model (3+1). Much better fit with 3+2 model.
- Collaboration considering merits of future running
 - Running under various configurations
 - Doubling neutrino mode POT running along with MicroBooNE

Backup

MiniBooNE Collaboration

A. A. Aguilar-Arevalo¹², C. E. Anderson¹⁵, S. J. Brice⁶, B. C. Brown⁶, L. Bugel¹¹, J. M. Conrad¹¹, Z. Djurcic², B. T. Fleming¹⁵, R. Ford⁶, F. G. Garcia⁶, G. T. Garvey⁹, J. Mirabal⁹, J. Grange⁷, J. A. Green^{8,9}, R. Imlay¹⁰, R. A. Johnson³, G. Karagiorgi¹¹, T. Katori^{8,11}, T. Kobilarcik⁶, S. K. Linden¹⁵, W. C. Louis⁹, K. B. M. Mahn⁵, W. Marsh⁶, C. Mauger⁹, W. Metcalf¹⁰, G. B. Mills⁹, C. D. Moore⁶, J. Mousseau⁷, R. H. Nelson⁴, V. Nguyen¹¹, P. Nienaber¹⁴, J. A. Nowak¹⁰, B. Osmanov⁷, Z. Pavlovic⁹, D. Perevalov¹, C. C. Polly⁶, H. Ray⁷, B. P. Roe¹³, A. D. Russell⁶, M. H. Shaevitz⁵, M. Sorel^{5*}, J. Spitz¹⁵, I. Stancu¹, R. J. Stefanski⁶, R. Tayloe⁸, M. Tzanov⁴, R. G. Van de Water⁹, M. O. Wascko^{10†}, D. H. White⁹, M. J. Wilking⁴, G. P. Zeller⁶, E. D. Zimmerman⁴

Account for neutrino low-E events

- Fits on prior page assume only anti-neutrinos are oscillating, but we know there is a low E excess in nu mode data
- Simplest scaling is to assume that there should be an excess in the low energy region proportional to the WS content (21 events)

Sterile neutrinos

- 3 active neutrinos +
 1 sterile neutrino
- Sterile neutrino has no Standard Model interactions
- Active neutrinos can oscillate into sterile
- 3 parameters relevant for short baseline exp.: Δm_{41}^{2} , $|U_{e4}|$ and $|U_{114}|$

$$\begin{split} P\left(\nu_{\mu} \rightarrow \nu_{e}\right) &= 4 \left|U_{e4}\right|^{2} \left|U_{\mu 4}\right|^{2} \sin^{2}(1.27 \, \Delta \, m_{41}^{2} \, L/E) \\ P\left(\nu_{e} \rightarrow \nu_{e}\right) &= 1 - 4 \left|U_{e4}\right|^{2} \left(1 - \left|U_{e4}\right|^{2}\right) \sin^{2}(1.27 \, \Delta \, m_{41}^{2} \, L/E) \\ P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) &= 1 - 4 \left|U_{\mu 4}\right|^{2} \left(1 - \left|U_{\mu 4}\right|^{2}\right) \sin^{2}(1.27 \, \Delta \, m_{41}^{2} \, L/E) \end{split}$$

More sterile neutrinos

Next minimal extension 3+2 models

- Favored by fits to world data
- Model allows CP violation

•
$$V_{\mu} \rightarrow V_{e} \neq V_{\mu} \rightarrow V_{e}$$

Signal prediction

- Assuming only right sign oscillates ($\overline{\nu}_{\mu}$)
- Need to know wrong sign vs right sign
- $\overline{\nu}_{\!_{\mu}}$ CCQE gives more forward peaked muon

