

Overview of Neutrino Physics and Motivation:

Stephen Parke Fermilab

- Nu Standard Model
- Beyond Nu SM
- Summary & Conclusions

Unanswered Questions!

- Nature of the Nu: Majorana v Dirac (2 v 4 components)
- CPV in the neutrino sector (determining Dirac phase) credibility of Leptogenesis!
- Ordering of mass eigenstates (atmospheric or [31] mass hierarchy)
- Octant of theta_23 (|U_mu3|^2 < or > |U_tau3|^2)
- Majorana phases
- Absolute Neutrino Mass; m_lite

- What is the mass of Sterile neutrinos? light? superheavy?
- What is the size of the Non-Standard Interactions?
- Where are the true Surprises?

Nu Standard Model:

Label the Neutrino mass eigenstates such that:

 ν_e component of ν_1 > ν_e component of ν_2 > ν_e component of ν_3

i.e.
$$|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$$

SNO determined the solar mass hierarchy (1 <-> 2) !!!

Fractional Flavor Content

$$\sin^2 \theta_{13} \equiv |U_{e3}|^2, \quad \sin^2 \theta_{12} \equiv \frac{|U_{e2}|^2}{(1 - |U_{e3}|^2)}, \quad \sin^2 \theta_{23} \equiv \frac{|U_{\mu 3}|^2}{(1 - |U_{e3}|^2)}$$

Nu Standard Model:

Fractional Flavor Content varying $\cos \delta$

$$\delta m_{sol}^2 = +7.6 \times 10^{-5} \ eV^2$$

$$|\delta m_{atm}^2| = 2.4 \times 10^{-3} \ eV^2$$

$$|\delta m_{sol}^2|/|\delta m_{atm}^2| \approx 0.03$$

Stephen Parke

$$\sqrt{\delta m_{atm}^2} = 0.05~eV < \sum m_{\nu_i} < 0.5~eV = 10^{-6} * m_e$$

$$\sin^2\theta_{12} \sim \frac{1}{3}$$

$$\sin^2\theta_{23} \sim \frac{1}{2}$$

$$\sin^2\theta_{13} \sim 0.02$$

$$0 \leq \delta < 2\pi$$

7/23/2012

Masses & Mixings:

$$\sin^2 \theta_{13} \approx 0.02 \pm 0.01$$

$$|\sin^2\theta_{12} - \frac{1}{3}|$$
 < 0.04

$$|\sin^2\theta_{23} - \frac{1}{2}|$$
 < 0.12

Close to Tri-Bi-Maximal: Accident or Symmetry?

Are the deviations from TBM or BM or ... related?

Masses & Mixings (conti.)

- BM, TBM, GR might only apply to neutrino mixing and $U_{PMNS} = U_e U_\nu^\dagger$ implies $\theta_{13} \approx \frac{\theta_{12}^e}{\sqrt{2}}$ Solar Sum Sum Rule: King ('05); Masina ('05); Altarelli, Feruglio, Masina ('04), Antusch, King ('04), Ferrandis, Pakvasa ('04), Antusch, King ('05), Datta, Everett, Ramond ('05), Mohapatra, Rodejohann ('05), Antusch, Maurer ('11) Mazocca, Petcov, Romanino, Spinrath ('11)
- Bimaximal $\theta_{12} = 45^o + \theta_{13}\cos\delta \rightarrow \delta \approx \pi$
- \Box Tri-bimaximal $heta_{12}=35^o+ heta_{13}\cos\delta o\deltapprox\pmrac{\pi}{2}$
- Golden ratio $\theta_{12} = 32^o + \theta_{13} \cos \delta$

Experiment
$$\theta_{12} = 34^o \pm 1^o$$
 $\theta_{13} = 9^o \pm 1^o$

Masses & Mixings (conti.)

- \Box Quark-Lepton Complementarity $\theta_{12}+\theta_C=45^o$
- \Box Solar sum rules Bimaximal $\theta_{12}=45^o+\theta_{13}\cos\delta$

Plus HO corrections...

Trí-bímaximal
$$\theta_{12}=35^o+\theta_{13}\cos\delta$$

Golden Ratío
$$\theta_{12}=32^o+\theta_{13}\cos\delta$$

☐ Atm. sum rules

Plus Charged Lepton Corrections...

Trí-bímaximal-
$$\theta_{12}=35^o$$
 $\theta_{23}=45^o$ cabíbbo $\theta_{13}=\theta_C/\sqrt{2}=9.2^o$ Trímaximal1 $\theta_{23}=45^o+\sqrt{2}\theta_{13}\cos\delta$ θ_{12}

Trimaximal
$$\theta_{23} = 45^o - \frac{\theta_{13}}{\sqrt{2}}\cos\delta$$

Now that θ_{13} is measured these predict $\cos\delta$

Non-Maximal Theta_23

Contours

Adding in the extra data and the atmospherics

New MINOS neutrino oscillation parameters

$$\Delta m^2 = 2.39^{+0.09}_{-0.10} \times 10^{-3} eV^2$$

$$\sin^2(2\theta) = 0.96^{+0.04}_{-0.04}$$

$$\sin^2(2\theta) > 0.90$$
 at 90% C.L.

4*0.4*0.6=0.96

8

23 MINOS @ Neutrino 2012 by Ryan Nichol

Sausages!

Stephen Parke NuFact 2012 @ JLAB and W&M 7/23/2012

Global Fits:

Global Fits 2012

10

Foglí, Lísí, Marrone, Forero, Tortola, Montaníno, Palazzo, Valle, Vanegas 12 Rotunno 12

parameter	best fit $\pm 1\sigma$	best fit $\pm 1\sigma$	
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	7.62 ± 0.19	$7.54^{+0.26}_{-0.22}$	
$\Delta m_{31}^2 [10^{-3} \text{eV}^2]$	$2.53^{+0.08}_{-0.10} - (2.40^{+0.10}_{-0.07})$	$ \begin{array}{c c} 2.43^{+0.07}_{-0.09} \\ -(2.42^{+0.07}_{-0.10}) \end{array} $	
$\sin^2 \theta_{12}$	$0.320^{+0.015}_{-0.017}$	$0.307^{+0.018}_{-0.016}$	
$\sin^2 \theta_{23}$	$0.49_{-0.05}^{+0.08} \\ 0.53_{-0.07}^{+0.05}$	$0.398^{+0.030}_{-0.026} \\ 0.408^{+0.035}_{-0.030}$	
$\sin^2 \theta_{13}$	$0.026^{+0.003}_{-0.004} \\ 0.027^{+0.003}_{-0.004}$	$0.0245^{+0.0034}_{-0.0031} 0.0246^{+0.0034}_{-0.0031}$	
δ	$(0.83^{+0.54}_{-0.64}) \pi$ $0.07\pi^{a}$	$(0.89^{+0.29}_{-0.44})\pi$ $(0.90^{+0.32}_{-0.43})\pi$	

- θ_{23} determination in global analysis:
 - Maximal $\theta_{23}=45$ Disfavoured at 1.6–2 σ level Now mostly driven by MINOS ν_{μ} DIS

11

N (Huber)

Neutrinos: Theory

Concha Gonzalez-Garcia

Stephen Parke NuFact 2012 @ JLAB and W&M 7/23/2012

- θ_{23} determination in global analysis:
 - Maximal $\theta_{23}=45$ Disfavoured at 1.6–2 σ level Now mostly driven by MINOS ν_{μ} DIS
 - First octant $\theta_{23} < 45$ Favoured at 1.6–2 σ level Driven by SK I–III ATM Sub-GeV ν_e excess It seems to be reduced in SK-IV analysis

12

Neutrinos: Theory Concha Gonzalez-Garcia

Stephen Parke NuFact 2012 @ JLAB and W&M 7/23/2012

- θ_{23} determination in global analysis:
 - Maximal $\theta_{23}=45$ Disfavoured at 1.6–2 σ level Now mostly driven by MINOS ν_{μ} DIS
 - First octant $\theta_{23} < 45\,$ Favoured at 1.6–2 σ level Driven by SK I–III ATM Sub-GeV ν_e excess It seems to be reduced in SK-IV analysis
- $sign(\Delta m_{atm}^2)$ determination in global analysis:
 - No significant difference Normal versus Inverted
 Driven by SK ATM
- δ_{CP} determination in global analysis:
 - Signal at most at 1.7 σ level Driven mostly by SK ATM (slight LBL ν_e app)

13

Neutrinos: Theory

Concha Gonzalez-Garcia

N (Huber) N (Free flux+ RSBL) I (Huber)

I (Free Flux +RSBL)

Global(with ATM)

- θ_{23} determination in global analysis:
- θ_{23} determination in global analysis:

 Maximal $\theta_{23} = 45$ Disfavoured at 1.6–2 σ level

 Now mostly driven by MINOS ν_{μ} DIS

 First octant $\theta_{23} < 45$ Favoured at 1 effects be done under

 Driven by SK I–III ATM Subsequently be done under

 It seems to be reduced it of these which can only be sign(Δm^2_{atm}) determination in global analysis:

 No signification details of ATM data analysis and versus Inverted

 Driven mostly by SK ATM (and slight LBL ν_{ν} app)
- - - Driven mostly by SK ATM (and slight LBL ν_e app)

14

Neutrinos: Theory Concha Gonzalez-Garcia

adding atmospheric data?

3-flavor effects in atmospheric neutrinos

$$r=r(E_{
u})\equiv rac{F_{\mu}^{0}(E_{
u})}{F_{e}^{0}(E_{
u})}$$
 $rpprox 2$ (sub-GeV) $rpprox 2.6-4.5$ (multi-GeV)

T. Schwetz

Inverted hierarchy

15

Normal hierarchy

SuperK Fit: (Itow 2012)

- Surprising large θ_{13} has opened the door to the next stage of atmospheric neutrino study.
 - Next goal; mass hierarchy, the octant of θ_{23} and CP δ ...

My Mother's Advice:

Before you eat a sausage, know what's inside!

Stephen Parke NuFact 2012 @ JLAB and W&M 7/23/2012

Holy Grail: the Unitarity Triangle

Unitarity Triangle:

$$|J| = 2 \times Area$$

 $J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2\sin\delta$

- ullet First Row: Superbeams where u_e contamination $\sim \! 1 \ \%$
- Second Row: ν -Factory or β -Beams, no beam contamination

However

for ν -Factory: Distinguish μ^+ from μ^- at 10^{-4}

for β -Beam: Distinguish μ from e in Water Cerenkov or LAr

$$\nu_{\mu} \rightarrow \nu_{e}$$

$$P_{\mu
ightarrow e} pprox \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} \mid^2$$

$$\Delta_{ij} = \delta m_{ij}^2 L/4E$$

CP violation !!!

where
$$\sqrt{P_{atm}}=\sin\theta_{23}\sin2\theta_{13}~\sin\Delta_{31}$$
 and $\sqrt{P_{sol}}=\cos\theta_{23}\sin2\theta_{12}~\sin\Delta_{21}$

$$P_{\mu o e}~pprox~P_{atm}+2\sqrt{P_{atm}P_{sol}}\cos(\Delta_{32}\pm\delta)+P_{sol}$$
 only CPV $\cos(\Delta_{32}\pm\delta)~=~\cos\Delta_{32}\cos\delta\mp\sin\Delta_{32}\sin\delta$

Large Theta_13

from EFM

Asymmetry:

$$A_{vac} pprox rac{1}{11} \, rac{\sin 2 heta_{13} \sin \delta}{(\sin^2 2 heta_{13} + 0.002)}$$

$$[A_{vac} \equiv rac{P-ar{P}}{P+ar{P}} = rac{P_{\delta}-P_{0}}{P_{0}} \text{ at } \Delta_{31} = rac{\pi}{2} \text{ (VOM)}]$$

$$u_{\mu} \rightarrow \nu_{e}$$

In Matter:

$$P_{\mu \to e} pprox |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)} + \sqrt{P_{sol}}|^2$$

where
$$\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31}$$

and
$$\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21}$$

For $L = 1200 \ km$ and $\sin^2 2\theta_{13} = 0.04$

$$a = G_F N_e / \sqrt{2} = (4000 \ km)^{-1}$$
,

Anti-Nu: Normal Inverted dashes $\delta=\pi/2$ solid $\delta=3\pi/2$

J-PARC+HK @ Kamioka L=295km OA=2.5deg

LoI: The Hyper-Kamiokande Experiment arXiv:1109.3262v1

J-PARC+LAr @ Okinoshima L=658km OA=0.78deg

J-PARC P32 (LAr TPC R&D), arXiv:0804.2111

TABLE I. Detector parameters of the baseline design.

Detector type		Ring-imaging water Cherenkov detector	
Candidate site	Address	Tochibora mine	
		Kamioka town, Gifu, JAPAN	
	Lat.	$36^{\circ}21'08.928''N$	
	Long.	$137^{\circ}18'49.688''$ E	
	Alt.	508 m	
	Overburden	$648~\mathrm{m}$ rock (1,750 m water equivalent)	
	Cosmic Ray Muon flux	$1.0 \sim 2.3 \times 10^{-6} \ {\rm sec^{-1} cm^{-2}}$	
	Off-axis angle for the J-PARC ν	2.5° (same as Super-Kamiokande)	
	Distance from the J-PARC	$295~\mathrm{km}$ (same as Super-Kamiokande)	
Detector geometry	Total Volume	0.99 Megaton	
Inner Volume (Fiducial Volume		$0.74~(0.56)~\mathrm{Megaton}$	
	Outer Volume	0.2 Megaton	
Photo-multiplier Tubes	Inner detector	99,000 20-inch ϕ PMTs	
		20% photo-coverage	
	Outer detector	25,000 8-inch ϕ PMTs	
Water quality	light attenuation length	>100m @ 400 nm	
	Rn concentration	$<1~\mathrm{mBq/m^3}$	

Mass Hierarchy:

For $\sin^2 2\theta_{13} = 0.1$, the mass hierarchy can be determined with more than 3σ significance for 46% of the δ parameter space.

LBNE

LBNE original

https://indico.fnal.gov/conferenceDisplay.py?confld=5622

• LBNE:

- Beamline Ermilab: 1-5 GeV, 700 kW ---> 2.1 MW

- Baseline: 1300 kg on-axis, Fermilab to Homestake

- Detector: 34 ktons Lr@ 4300 mwe in Homestake

LBNE-lite: three options

- 30 kton LAr @ Ash River next to NOvA on surface
 - off axis, narrow band beam, little spectral info.
 - surface detector (?): no proton decay or supernova nus or atmos nus

- 15 kton LAr @ Soudan next to MINOS at 2100 mwe
 - on axis, but spectrum is at higher energy than optimal
 - under ground detector, proton decay (K+nu), supernova nus and atmos nus. Broader program.

- 10 kton LAr @ Homestake on surface
 - NEW NEUTRINO BEAMLINE required, can be optimize
 - surface detector (?): no proton decay, supernova nus or atmos nus
 - upgrade potential

All fiducial masses

LBNE-lite Summary:

	Ash River	Soudan	Homestake
Baseline	810 km	735 km	1300 km
Detector Mass	30 kt	15 kt	10 kt
Detector position	Surface	Underground 2300 ft	Surface
Beamline	Existing NuMI	Existing NuMI	New

Preferred Option, best upgrade potential, most expensive

Physics Reach of these Options:

Atmospheric (31) Mass Hierarchy

Stephen Parke NuFact 2012 @ JLAB and W&M 7/23/2012

Physics Reach (conti)

CPV

European sites: LAGUNA-LBNO 🗥

arXiv:1003.1921 [hep-ph]

Three far sites considered in details

- Large Water Cerenkov Detector. CERN-Fréjus is a short baseline. It offers good synergy for enhanced physics reach with βbeam at $\gamma=100$
- Liquid Argon TPC & magnetized iron + Liquid Scintillator detectors CERN-Pyhäsalmi is the longest baseline. It offers good synergy for enhanced physics reach with a NF
- [CNGS is an existing beam but is considered at lower priority (missing near detector, limited power upgrade scenarios)]

The Neutrino Factory...

7/23/2012 Stephen Parke NuFact 2012 @ JLAB and W&M

Special Baselines:

$$P_{\mu o e} pprox |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)}+\sqrt{P_{sol}}|^2$$

"Magic" Baseline

CERN to INO

$$P_{sol}=0$$
 when $aL=\pi,2\pi,\ldots$

JPARC to INO

34

in earth this happens for Lpprox7500 km

then
$$P_{\mu e}pprox P_{atm}=\sin^2 heta_{23}\sin^2 heta_{13}rac{\sin^2(\Delta_{31}\mp aL)}{(\Delta_{31}\mp aL)^2}\Delta_{31}^2$$

No sensitivity to CPV (δ)

Good for measuring $\sin^2\theta_{13}$ and Mass Hierarchy

Bi-Magic Baseline, In Matter: Max for one Hierarchy and 0 other $P_{\mu
ightarrow e} pprox \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} \mid^2$ where $\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31}$ and $\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21}$

$$a = G_F N_e / \sqrt{2} = (4000 \ km)^{-1}$$
,

Sushant K. Raut, Ravi Shanker Singh, S.Uma Sankar arXiv:0908.3741

Amol Dighe, Srubabati Goswami, Shamayita Ray arXiv:1009.1093

"Bi-Magic" Baseline and Energy

Choose L such that

 $P_{atm}|_{IH}=0$ and $P_{atm}|_{NH}$ is max. at E_{IH} and

 $P_{atm}|_{NH}=0$ and $P_{atm}|_{IH}$ is max. at E_{NH}

L=2540 km and E_{IH} =3.3 GeV and E_{NH} =1.9 GeV

flip when ν and $\bar{\nu}$ interchange

Approx. Fermilab to Yucca Mtn:

Another Special Baseline & Energy!

Can we chose a baseline and energy such that for neutrino we sit at the 1^{st} oscillation maximum (OM) and anti-neutrinos we sit at 2^{nd} OM (or vice versa, depending on hierarchy)?

$$\Delta_{31} + (aL) = 3\pi/2$$
 and $\Delta_{31} - (aL) = \pi/2$ $\Rightarrow \Delta_{31} = \pi$ and $(aL) = \pi/2$

Baseline is 4000-4500 km and neutrino energy 4.0-4.5 GeV i.e stored muons of around 9 GeV or so !!!

Can probe 1^{st} and 2^{nd} Oscillation Maxima with same facilities!

Precision:

P. Coloma, A. Donini, EFM and P. Hernandez 1203.5651

Are $\delta=6^{\circ}\pm2^{\circ}$ and $\delta=84^{\circ}\pm2^{\circ}$ equally good measurements?

We need more precision around 0, π , . . . !

Maybe uncertainty in $\sin \delta$ is a better measure!

Testing the Paradigm:

For small values of $\left(\frac{L}{E_{\nu}}\right) \ll 500 \left(\frac{\mathrm{km}}{\mathrm{GeV}}\right)$, we can expand the appearance probability in powers of $\left(\frac{L}{E_{\nu}}\right)$ as follows: $\left(\sin(1)=0.84\right)$

$$P_{
u_e o
u_\mu} \sim \left(\frac{L}{E_
u}\right)^2 + \left(\frac{L}{E_
u}\right)^4 + \dots \qquad \text{CPC}$$
 $+ \left(\frac{L}{E_
u}\right)^3 + \left(\frac{L}{E_
u}\right)^5 + \dots \quad \text{CPV}$

All parameters are determined by first few terms!!! To test the form Oscillation Probability we need $\left(\frac{L}{E_{\nu}}\right) \sim {
m or even} > 500 \left(\frac{{
m km}}{{
m GeV}}\right)$.

Are smaller values of E_{ν} worth probing, even if it costs some precision ???

(matter effects complicate this discussion!)

Precision v Sensitivity to New Physics:

How much precision in δ would we sacrifice for additional sensitivity to New Physics !!

What about around $\delta = 0, \pi, \ldots$?

Beyond Nu SM

- Sterile
- Non-Standard Interactions (NSI)
- Premature Decoherence
- Neutrino Decay
- Effects of Extra Dimensions
- Surprises!

Sterile Neutrinos:

hints of Sterile Neutrinos

- LSND (3.8 sigma)
- miniBooNE neutrinos & anti-neutrinos (?)
- Reactor Anomaly
- Gallium Anomaly

41

Stephen Parke NuFact 2012 @ JLAB and W&M 7/23/2012

nuSTORM:

100 kW Target Station

- Assume 60 GeV proton
 - > Fermilab PIP era
- Ta target
 - Optimization on-going
- Horn collection after target
 - Li lens has also been explored
- Collection/transport channel
 - Two options
 - > Stochastic injection of π
 - > Kicker with $\pi \rightarrow \mu$ decay channel
 - At present NOT considering simultaneous collection of both signs
- Decay ring
 - Large aperture FODO
 - Racetrack FFAG
 - > Instrumentation
 - > BCTs, mag-Spec in arc, polarimeter

Alan Bross

Fermilab Physics Advisory Committee

June 21, 2012

Experimental Layout

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2(\frac{\Delta m_{41}^2 L}{4E})$$

Appearance Channel:

$$v_e \rightarrow v_{\mu}$$
Golden Channel

Must reject the "wrong" sign μ with great efficiency

Why $v_{\mu} \rightarrow v_{e}$ Appearance Ch.
not possible

Alan Bross

Fermilab Physics Advisory Committee

June 21, 2012

20

29

June 21, 2012

Alan Bross

Fermilab Physics Advisory Committee

7/23/2012

Summary & Conclusion:

Large Theta_13

- wonderful opportunity for all !!!
 - · Double Chooz, Daya Bay and Reno
 - SuperK Atm, T2K, NOvA
 - · LBNE, T2HK, etc
 - precision determination of Theta_13
 - · exclude wrong Hierarchy at high CL
 - CPV, precision dominated by systematic effects!
 - New Physics less likely to be entangled with Theta_13 effects!

Re-Optimization of NuFact is required!