Sterile neutrinos

Patrick Huber

Center for Neutrino Physics at Virginia Tech

NuFact 2012 – International Workshop on Neutrino Factories,
Super Beams and Beta Beams
July 23-28, 2012
Williamsburg, VA USA

LSND and MiniBooNE

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \simeq 0.003$$

Tension between neutrino and antineutrino signals?

Reactor anomaly

6% deficit of $\bar{\nu}_e$ from nuclear reactors at short distances

- 3% increase in reactor neutrino fluxes
- decrease in neutron lifetime
- inclusion of long-lived isotopes (non-equilibrium correction)

Reactor antineutrino fluxes

Shift with respect to ILL results, due to

- a) different effective nuclear charge distribution
- b) branch-by-branch application of shape corrections

Non-equilibrium corrections

only 2 dozen isotopes with $t_{1/2} > 12\,\mathrm{h}$ above inverse β -decay threshold

Mueller, et al., RRC 83 (2011) 054615

Extra shift due to long-lived isotopes

- a) small nuclear physics uncertainty in β -decay
- b) depends on detailed fuel history

Neutron lifetime

Gallium anomaly

	GALLEX		SAGE	
k	G1	G2	S1	S2
source	⁵¹ Cr	⁵¹ Cr	⁵¹ Cr	³⁷ Ar
$R^k_{\mathbf{B}}$	0.953 ± 0.11	$0.812^{+0.10}_{-0.11}$	0.95 ± 0.12	$0.791 \pm ^{+0.084}_{-0.078}$
$egin{aligned} R_{ m B}^k \ R_{ m H}^k \end{aligned}$	$0.84^{+0.13}_{-0.12}$	$0.71^{+0.12}_{-0.11}$	$0.84^{+0.14}_{-0.13}$	$0.70 \pm ^{+0.10}_{-0.09}$
radius [m]	1.9		0.7	
height [m]	5.0		1.47	
source height [m]	2.7	2.38		0.72

25% deficit of ν_e from radioactive sources at short distances

- effect depends on nuclear matrix element
- interpretation as sterile neutrino is in conflict with large scale structure neutrino mass bounds over a large fraction of the parameter space

Nuclear matrix elements – I

Nuclear matrix elements – II

For example for the rate from ⁵¹Cr this implies, following Haxton nucl-th/9804011v2, the following correction

$$0.667 \frac{GT(5/2^{-})}{GT(gs)} + 0.218 \frac{GT(3/2^{-})}{GT(gs)}$$

where GT(gs) is the ground state β -decay Gamow-Teller matrix element determined from the β -decay of 71 Ge.

The problem is that $GT(5/2^-)$ and $GT(3/2^-)$ need be indirectly inferred, for instance from (p,n) exchange reaction measurements.

Astrophysics

Model	Data	$N_{\mathrm eff}$	Ref.
$\frac{N_{\rm eff}}{N_{\rm eff}}$	$W-5+BAO+SN+H_0$	4 12+0.87(+1.76)	[347]
146))	W-5+LRG+ H_0	4.13 _{-0.85(-1.63)} 4.16 ^{+0.76(+1.60)} _{-0.77(-1.43)}	[347]
	ŭ	$3.4^{+0.6}_{-0.5}$	
	W-5+CMB+BAO+XLF+ f_{gas} + H_0		[350]
	W-5+LRG+maxBCG+ H_0	$3.77^{+0.67(+1.37)}_{-0.67(-1.24)}$	[347]
	W-7+BAO+ H_0	$4.34^{+0.86}_{-0.88}$	[339]
	W-7+LRG+ H_0	$4.25^{+0.76}_{-0.80}$	[339]
	W-7+ACT	5.3 ± 1.3	[344]
	W-7+ACT+BAO+ H_0	4.56 ± 0.75	[344]
	W-7+SPT	3.85 ± 0.62	[345]
	W-7+SPT+BAO+ H_0	3.85 ± 0.42	[345]
	W-7+ACT+SPT+LRG+ H_0	$4.08^{(+0.71)}_{(-0.68)}$	[351]
	W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41	[352]
$N_{\mathrm eff} + f_{\nu}$	W-7+CMB+BAO+ H_0	$4.47^{(+1.82)}_{(-1.74)}$	[353]
	W-7+CMB+LRG+ H_0	$4.87^{(+1.86)}_{(-1.75)}$	[353]
$\overline{N_{\mathrm{e}ff} + \Omega_k}$	$W-7+BAO+H_0$	4.61 ± 0.96	[352]
	W-7+ACT+SPT+BAO+ H_0	4.03 ± 0.45	[353]
$N_{\mathrm{e}ff} + \Omega_k + f_{\nu}$	W-7+ACT+SPT+BAO+ H_0	4.00 ± 0.43	[352]
	W-7+CL+SPT+BAO+ <i>H</i> ₀	(< 3.74)	[354]
$N_{\mathrm eff} + f_{\nu} + w$	W-7+CMB+BAO+ H_0	$3.68^{(+1.90)}_{(-1.84)}$	[353]
	W-7+CMB+LRG+ H_0	$4.87^{(+2.02)}_{(-2.02)}$	[353]
$\overline{N_{\mathrm{eff}} + \Omega_k + f_{\nu} + w}$	W-7+CMB+BAO+SN+H ₀	$4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$	[355]
	W-7+CMB+LRG+SN+ H_0	$4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$	[355]

 $N_{\rm eff} \simeq 4$ from relativistic energy density

BUT

 $m_s \lesssim 1 \, \mathrm{eV}$ from large scale structure

future data (PLANCK) will help to address this tension

Disappearance constraints

Absence of effects in

- atmospheric
- Bugey
- CDHS
- MINOS

- . . .

data creates considerable tension in 3+N sterile neutrino models

More details can be found in the sterile neutrino white paper, arXiv:1204.5379.

Sterile oscillation

In general, in a 3+N sterile neutrino oscillation model one finds that the energy averaged probabilities obey the following inequality

$$P(\nu_{\mu} \to \nu_{e}) \le 4P(\nu_{e} \to \nu_{e})P(\nu_{\mu} \to \nu_{\mu})$$

independent of CP transformations. Therefore, a stringent test of the model is to measure

- $P(\nu_{\mu} \rightarrow \nu_{e})$ appearance
- $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ appearance
- $P(\nu_{\mu} \rightarrow \nu_{\mu})$ or $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$ disappearance
- $P(\nu_e \to \nu_e)$ or $P(\bar{\nu}_e \to \bar{\nu}_e)$ disappearance

Summary

- All current hints are 3σ -ish
- A lot of hidden, hard to control systematics and theory errors
- Tension in global fits (see talk by G. Karagiorgia)
- Need for new experiments (see talk by B. Fleming)
- What would be the consequence of a discovery for LBL physics?