A Neutrino Factory MIND at Large θ_{13}

R. Bayes¹, A. Bross³, A. Cervera-Villanueva², M. Ellis^{4,5}, Tapasi Ghosh² A. Laing¹, F.J.P. Soler¹, and R. Wands³

¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunel University, ⁵Westpac Institutional Bank, Australia, on behalf of the IDS-NF collaboration

NUFACT 2012 24 July, 2012

- Introduction
- Simulation Overview
- 3 Analysis
- 4 Sensitivity to $\delta_{\it CP}$
- Conclusions

Consequences of Large θ_{13} on Neutrino Factory

- Physics priorities shift to measurement of CP violation.
- For measurement of θ_{13} used
 - Two baselines: 4000 km and 7500 km
 - 25 GeV stored μ energy.
- Re-optimization of baseline and beam energy required
- Measurement of $\delta_{\it CP}$ achieved with
 - Single 2000 km baseline.
 - 10 GeV stored μ energy.

From IDS-NF-020, Interim Design Report

 MIND simulation used to examine sensitivities with these specifications.

New Baseline Neutrino Factory

- Single decay ring.
- Stores both μ^+ and μ^- .
- 10 GeV final muon energy.
- Either RLA or FFAG will be used in final design.

Physics at a Neutrino Factory

- Neutrino Factory provides neutrinos from μ^+ and μ^- decay.
- Will produce 5×10^{20} useful muons of both species per year.

ν Oscillation Channels

	Store μ^+	Store μ^-
Golden Channel	$ u_{e} ightarrow u_{\mu}$	$ar u_{e} ightarrow ar u_{\mu}$
ν_e Disappearance Channel	$ u_{\mathbf{e}} ightarrow u_{\mathbf{e}}$	$ar u_{f e} ightarrow ar u_{f e}$
Silver Channel	$ u_{e} ightarrow u_{ au}$	$ar u_{f e} ightarrow ar u_{ au}$
Platinum Channel	$ar u_\mu o ar u_{e}$	$ u_{\mu} ightarrow u_{e}$
$ u_{\mu}$ Disappearance Channel	$ar u_\mu o ar u_\mu$	$ u_{\mu} \rightarrow \nu_{\mu} $
Dominant Oscillation	$ar u_\mu o ar u_ au$	$ u_{\mu} \rightarrow \nu_{\tau} $

MIND optimized for Golden Channel signal (wrong sign muon).

Physics at a Neutrino Factory

- Neutrino Factory provides neutrinos from μ^+ and μ^- decay.
- Will produce 5×10^{20} useful muons of both species per year.

ν Oscillation Channels

	Store μ^+	Store μ^-
Golden Channel	$ u_{e} ightarrow u_{\mu}$	$ar u_{e} ightarrow ar u_{\mu}$
$ u_e$ Disappearance Channel	$ u_{\mathbf{e}} ightarrow u_{\mathbf{e}}$	$ar u_{f e} ightarrow ar u_{f e}$
Silver Channel	$ u_{e} ightarrow u_{ au}$	$ar u_{f e} ightarrow ar u_{ au}$
Platinum Channel	$ar u_\mu o ar u_{e}$	$ u_{\mu} ightarrow u_{\mathbf{e}}$
$ u_{\mu}$ Disappearance Channel	$ar u_\mu o ar u_\mu$	$ u_{\mu} \rightarrow \nu_{\mu} $
Dominant Oscillation	$ar{ u}_{\mu} ightarrow ar{ u}_{ au}$	$ u_{\mu} \rightarrow \nu_{\tau} $

• MIND optimized for Golden Channel signal (wrong sign muon).

MIND Design for Neutrino Factory

- 100 kTon detector
- 14 m×14 m×140 m.
- X and Y views from 2 cm thick lattice of 1 cm×3.5 cm scintillator bars.
- B field from 3 cm Fe plates, induced by 120 kA current carried by 7 cm diameter SCTL

MIND Simulation

- Events simulated with GENIE.
- Full geometry & B
 field in GEANT 4
- Realistic field map generated by Bob Wands at FNAL
 - default positive focussing.

- Dimensions of detector easily altered for
 - optimization.
 - testing variations.

MIND Event Reconstruction

- Simulated events digitized.
 - Hits positions smeared and energy deposition attenuated.
 - Edep clustered into 3.5 cm×3.5 cm units.
- Tracks identified by Kalman Filter or Cellular automata.
- Kalman fitting used to determine momentum and charge.
- Algorithms from RecPack.
 - supported by Cervera-Villanueva et al.

• 50 $\bar{\nu}_{\mu}$ CC events.

• 50 ν_{μ} CC events.

Described in detail in IDR.

- Separates NC like from CC like events.
- CC backgrounds are reduced as they are partially NC like.

Departures from IDR Analysis

- Quadratic and displacement cuts removed.
- Kinematic cuts replaced by a uniform requirement Q_t > 0.15 GeV

or μ^- Focussing Magnetic Field

10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1 Fraction of Events Passed by Cuts

Described in detail in IDR.

- Separates NC like from CC like events.
- CC backgrounds are reduced as they are partially NC like.

Departures from IDR Analysis

- Quadratic and displacement cuts removed.
- Kinematic cuts replaced by a uniform requirement Q_t > 0.15 GeV

or μ^- Focussing Magnetic Field

10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1 Fraction of Events Passed by Cuts

Described in detail in IDR.

- Separates NC like from CC like events.
- CC backgrounds are reduced as they are partially NC like.

Departures from IDR Analysis

- Quadratic and displacement cuts removed.
- Kinematic cuts replaced by a uniform requirement Q_t > 0.15 GeV

μ^+ or μ^- Focussing Magnetic Field

10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻⁵ 10⁻² 10⁻¹ 1 Fraction of Events Passed by Cuts

Described in detail in IDR.

- Separates NC like from CC like events.
- CC backgrounds are reduced as they are partially NC like.

Departures from IDR Analysis

- Quadratic and displacement cuts removed.
- Kinematic cuts replaced by a uniform requirement Q_t > 0.15 GeV

μ^+ or μ^- Focussing Magnetic Field

10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1 Fraction of Events Passed by Cuts

Charge Current Selection Efficiencies

- All reconstruction efficiencies at or above 50%.
- Background suppressed by parts in 10³.
- NC backgrounds completely suppressed.
- Efficiency behaviours different for positive and negative focussing.

Charge Current Selection Efficiencies

- All reconstruction efficiencies at or above 50%.
- Background suppressed by parts in 10³.
- NC backgrounds completely suppressed.
- Efficiency behaviours different for positive and negative focussing.

Energy Response in Octagonal MIND

Assuming 10 GeV factory

- Two \vec{B} settings.
- μ^+ Focussing.
- μ^- Focussing.
- Field settings run separately.
- Optimization still required

Energy Response in Octagonal MIND

Assuming 10 GeV factory

- Two \vec{B} settings.
- μ^+ Focussing.
- \bullet μ^- Focussing.
- Field settings run separately.
- Optimization still required

Multi-Variate Analysis

- A full multivariate analysis is under development.
 - Use a set of correlated variables to select signal from background.
- Should be able to achieve higher efficiency than existing analysis.
- Still a work in progress.

Extracting Sensitivities from Simulation

- Use the simulation to produce "migration matrices"
 - Relates true neutrino energy to reconstructed energy.
 - Contains efficiency, energy resolution, and response information.
- Run pseudo-experiments with simulation package (ie. NuTS).

Data is composed of sum

$$n_i^{data} = M_{ij}^{sig}
u^{sig}(E_j) + \sum_k M_{ij}^{bkg,k}
u^{bkg,k}(E_j)$$

Define a fit of θ_{13} and δ_{CP} , simultaneously

$$\chi^{2} = 2 \sum_{i=0}^{L} \left(AxN_{+,i}(\theta_{13}, \delta_{CP}) - n_{+,i}^{data} + n_{+,i}^{data} \ln \left(\frac{n_{+,i}^{data}}{AxN_{+,i}(\theta_{13}, \delta_{CP})} \right) + AN_{-,i}(\theta_{13}, \delta_{CP}) - n_{-,i}^{data} + n_{-,i}^{data} \ln \left(\frac{n_{-,i}^{data}}{AN_{-,i}(\theta_{13}, \delta_{CP})} \right) + \frac{(A-1)^{2}}{\sigma_{A}^{2}} + \frac{(x-1)^{2}}{\sigma_{x}} \right)$$

Preliminary Precision in δ_{CP} For Octagonal MIND

Assuming 10 GeV Factory, 10 years Running, $0.5 \times 10^{21}~\mu^+$ + $0.5 \times 10^{21}~\mu^-$ per year

- Uses cuts-based analysis.
- Consider μ^+ and μ^- focussing
- Systematic variations shown $(\sigma_A, \sigma_X) = (1\%, 1\%) \rightarrow (2.5\%, 3\%)$.

χ^2 Contours; Arbitrary δ_{CP} , $\theta_{13} = 9^{\circ}$ 150 100 3σ sensitivity 50 $\delta_{\rm CP}({ m deg})$ -100 -150E 0.07 0.08 0.09 0.11 0.12 0.13 0.14 0.15 sin²2θ₄₃

Δδ (Deg)

8

10

Preliminary Precision in δ_{CP} For Octagonal MIND

Assuming 10 GeV Factory, 10 years Running, $0.5 \times 10^{21}~\mu^+$ + $0.5 \times 10^{21}~\mu^-$ per year

- Uses cuts-based analysis.
- Consider μ^+ and μ^- focussing
- Systematic variations shown $(\sigma_A, \sigma_X) = (1\%, 1\%) \rightarrow (2.5\%, 3\%)$.

χ^2 Contours; Arbitrary δ_{CP} , $\theta_{13} = 9^{\circ}$ 150 100 3σ sensitivity 50 $\delta_{\rm CP}({ m deg})$ -100 -150E 0.07 0.08 0.09 0.11 0.12 0.13 0.14 0.15 sin²2θ₄₃

Δδ (Deg)

Preliminary Sensitivity to δ_{CP}

Assuming 10 GeV Factory, 10 years Running, $0.5 \times 10^{21}~\mu^+ + 0.5 \times 10^{21}~\mu^-$ per year

Contours determined using the expression

$$\max(\chi^2(\delta_{\textit{CP}} = -180^\circ), \chi^2(\delta_{\textit{CP}} = 0^\circ), \chi^2(\delta_{13}^0 = 180^\circ)) - \chi^2_{\textit{min}} \geq \textit{n}^2$$

5σ Discovery Potential 0.8 δ_{CP} Fraction 0.2 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Both normal and inverted hierarchy cases are considered.

Preliminary Sensitivity to δ_{CP}

Assuming 10 GeV Factory, 10 years Running, $0.5 \times 10^{21}~\mu^+ + 0.5 \times 10^{21}~\mu^-$ per year

Contours determined using the expression

$$\max(\chi^2(\delta_{\textit{CP}} = -180^\circ), \chi^2(\delta_{\textit{CP}} = 0^\circ), \chi^2(\delta_{13}^0 = 180^\circ)) - \chi^2_{\textit{min}} \geq \textit{n}^2$$

5σ Discovery Potential 0.8 δ_{CP} Fraction 0.2 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Both normal and inverted hierarchy cases are considered.

What About Dipole Geometry at 10 GeV?

Assuming 10 GeV Factory, 10 years Running, $0.5 \times 10^{21}~\mu^+$ + $0.5 \times 10^{21}~\mu^-$ per year

- Achieved 10⁻⁴ background rejection in IDR
- Similar efficiency.
- Optimized for two baselines.

 $\Delta\delta$ (Deg)

8

10

What does this tell us?

- δ_{CP} precision and sensitivity comparable between dipole and toroidal analyses for the same experimental conditions.
- Reduction of backgrounds does not increase sensitivity.
- Will reduction of energy threshold help?

Outlook

There has been great progress in the past year.

- Complete change to GENIE event generator.
- Introduction of realistic octagonal geometry
- Improvement of reconstruction to allow toroidal field.

Still work in progress

- Reconstruction of secondary, hadron tracks.
- Update to use multi-variate analysis.
- Optimize analysis for physics outcomes.

Early conclusions

• Preliminary precision of δ_{CP} between 2° and 8° with toroidal magnetic field.

