A Neutrino Factory MIND at Large 643

R. Bayes', A. Bross®, A. Cervera-Villanueva® , M. Ellis*®, Tapasi
Ghosh? A. Laing' , FJ.P. Soler! , and R. Wands®

"University of Glasgow, 2IFIC and Universidad de Valencia, 3Fermilab, 4Brunel University,
SWestpac Institutional Bank, Australia,
on behalf of the IDS-NF collaboration

NUFACT 2012 X’
24 July, 2012 fac

4

R. Bayes (University of Glasgow) A Neutrino Factory MIND at Large 613 NUFACT, July 2012 1/18




@ Introduction

e Simulation Overview
© Analysis

° Sensitivity to dcp

G Conclusions

R. Bayes (University of Glasgow)

A Neutrino Factory MIND at Large 613



Consequences of Large 013 on Neutrino Factory

@ Physics priorities shift to
measurement of CP violation.
@ For measurement of 645 used

@ Two baselines: 4000 km and
7500 km
o 25 GeV stored p energy.

E, [GeV]

@ Re-optimization of baseline
and beam energy required

@ Measurement of ¢p achieved
with

E, [GeV]
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o 10 GeV stored i energy.

From IDS-NF-020, Interim Design Report

@ MIND simulation used to examine sensitivities with these
specifications.

R. Bayes (University of Glasgow) A Neutrino Factory MIND at Large 613 NUFACT, July 2012 3/18



New Baseline Neutrino Factory

Neutrino Beam
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Physics at a Neutrino Factory

@ Neutrino Factory provides neutrinos from ™ and p~ decay.
@ Will produce 5x 1020 useful muons of both species per year.

v Oscillation Channels

Store ™ | Store pu—
Golden Channel Ve = Vy | Ue— 1y
ve Disappearance Channel | ve — ve | e — Ve
Silver Channel Ve — Uy | Vg — Uy
Platinum Channel Uy — Ve | vy — Ve
v, Disappearance Channel | v, — 7, | v, — v,
Dominant Oscillation Uy = Ur | vy o ur

@ MIND optimized for Golden Channel signal (wrong sign muon).
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MIND Design for Neutrino Factory

@ Bfield from 3 cm Fe plates, induced by
120 kA current carried by 7 cm diameter

SCTL

R. Bayes (University of Glasgow)

d

@ 100 kTon detector
@ 14 mx14 mx140 m.

@ X andY views from 2 cm thick lattice of
1 cmx 3.5 cm scintillator bars.
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MIND Simulation
@ Events simulated with GENIE.
@ Full geometry & B field in GEANT 4

@ Realistic field map generated by Bob
Wands at FNAL

o default positive focussing.
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viewer-0 (OpenGLImmediateX)

@ Dimensions of detector
easily altered for
@ optimization.
e testing variations.
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MIND Event Reconstruction

50 7, CC events.

@ Simulated events digitized.

e Hits positions smeared and
energy deposition
attenuated.

e Edep clustered into
3.5 cmx3.5 cm units.

Radial Position of Hit in Meters
O b N W D OO N ®
T
o ,u- =
s

-30 -20 -10 0 10 20 30

@ Tracks identified by Kalman Z Position of Hitin Meters
Filter or Cellular automata. v, GG events.

@ Kalman fitting used to
determine momentum and
charge.

@ Algorithms from RecPack.

e supported by
Cervera-Villanueva et al.
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o
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@ Fitted hits in red others in black.
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Cuts Based Golden Analysis

Described in detail in IDR.

@ Separates NC like from CC
like events.

@ CC backgrounds are
reduced as they are partially
NC like.

4

Departures from IDR Analysis

@ Quadratic and displacement
cuts removed.
@ Kinematic cuts replaced by a

uniform requirement
Q> 0.15 GeV

R. Bayes (University of Glasgow)

A Neutrino Factory MIND at Large 613

or u~ Focussing Magnetic Field
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v

9/18

NUFACT, July 2012



Cuts Based Golden Analysis

Described in detail in IDR.
@ Separates NC like from CC o
like events. —_—

e CC backgrounds are CC Selection mm—
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Charge Current Selection Efficiencies

Signal Efficiencies Background
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@ All reconstruction efficiencies at or above 50%.

@ Background suppressed by parts in 103.

@ NC backgrounds completely suppressed.

@ Efficiency behaviours different for positive and negative focussing.
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Energy Response in Octagonal MIND

Assuming 10 GeV factory

v,, Appearance Signal v,, Appearance Signal

True v Energy (GeV)
True v Energy (GeV)

@ Two B settings.
@ . Focussing.
@ .~ Focussing.

@ Field settings run
separately.

@ Optimization still
required
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Multi-Variate Analysis

@ A full multivariate analysis is under development.
o Use a set of correlated variables to select signal from background.

@ Should be able to achieve higher efficiency than existing analysis.
@ Still a work in progress.

Variety of Methods Tested Example KNN Method

Background rejection versus Signal efficiency Thava Cut efficiencies and optimal cut value
c 1pm T Signal efficiency ——— Signal purity
s F v% E . A etneieney | T Signal efficiency*purity
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£, = E > F 8
o F MVA Method: 3 £ 1 416 g
o 08f BDTG a 5\\ b <
5 E ——— BDT \ 5 = F c
o C u 410 2
S 07 s N 3 o8- 0 &
i~ E ———! RuleFit H [ L
o o/ RuleFi S C 36
S 0.6 s gp 5 06 1
F ——iCutsD r /’I 42
05 e Pkl od r fO
£ Li PCA 04 L
041 FDA GA r P
F LD 0.2 wna Fbackground At
0.3 | & F i #
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Extracting Sensitivities from Simulation

@ Use the simulation to produce "migration matrices"
o Relates true neutrino energy to reconstructed energy.
e Contains efficiency, energy resolution, and response information.

@ Run pseudo-experiments with simulation package (ie. NuTS).

Data is composed of sum
ndata _ MSIQ stg Z Mbkg,k bkgk E/ )

i

.

Define a fit of 013 and dcp, simultaneously

2 data data data
X =2 Z AXN+, 913, 5CP) nﬂ- -+ n+’,- In (AXN+ 1(013 5CP)>

ndata
+AN_ ,((913, 5CP) — ndata + nda’a In (AN—’

+(A;;)2 + (X_1)2>

i(613,9¢cp)

A @

v,
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Preliminary Precision in 6cp For Octagonal MIND
Assuming 10 GeV Factory, 10 years Running, 0.5 x 10%" u* + 0.5 x 10! 1~ per year

Error in 6¢p from 1 o curves

@ Uses cuts-based analysis.

. ) 10¢
@ Consider ;™ and p~ focussing o
. - 8
@ Systematic variations shown T
(0p,0x)=(1%, 1%)—(2.5%, 3%). & o /\/\
g ;: M
x? Contours; Arbitrary dcp, 013 = 9° .
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Preliminary Sensitivity to d¢cp
Assuming 10 GeV Factory, 10 years Running, 0.5 x 10%" u* + 0.5 x 10! 1~ per year

Contours determined using the expression
max(x?(6ce = —180°). x*(cp = 0°),x*(635 = 180%)) — Xy = 1

Sensitivity curves 50 Discovery Potential

— 30 sensitivity
- 50 sensitivity 0.8~
100 sensitivity <
’g)\ -.-. Daya Bay 6,, '% 0.6/~
e E :
\% [ L
i 504
02f
S 005 0,04 0.06°0.05 01 042014016 0-0""0.02 004 ooe 008 0.1 012 0.14
sin20, , sin 29
) v

@ Both normal and inverted hierarchy cases are considered.
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What About Dipole Geometry at 10 GeV?

Assuming 10 GeV Factory, 10 years Running, 0.5 x 10%" u* + 0.5 x 10! 1~ per year

o Achioved 10~ backgrounc

rejection in IDR E
@ Similar efficiency. 3
> E
. . . o 6F
@ Optimized for two baselines. 8 o
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What does this tell us?

dcp Sensitivity curves 50 Discovery Potential
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@ Jcp precision and sensitivity comparable between dipole and
toroidal analyses for the same experimental conditions.

@ Reduction of backgrounds does not increase sensitivity.
@ Will reduction of energy threshold help?
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Outlook

There has been great progress in the past year.

@ Complete change to GENIE event generator.

@ Introduction of realistic octagonal geometry

@ Improvement of reconstruction to allow toroidal field.
Still work in progress

@ Reconstruction of secondary, hadron tracks.

@ Update to use multi-variate analysis.

@ Optimize analysis for physics outcomes.
Early conclusions

@ Preliminary precision of §cp between 2° and 8° with toroidal
magnetic field.
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