

IceCube/DeepCore and IceCube/PINGU: Prospects for Few-GeV Scale ${\bf v}$ Physics in the Ice

International Workshop on Neutrino Factories, Super Beams and Beta Beams
NuFact 2012
July 23-28, 2012
Williamsburg, VA, USA

Doug Cowen
IceCube and PINGU Collaborations
and
Department of Physics
Penn State University

Outline

- IceCube/DeepCore
 - Design, geometry
 - Performance
 - Physics goals, first results
- Future plans
 - PINGU*
 - Possible design, geometry
 - Physics goals

*Precision IceCube Next-Generation Upgrade

2

The IceCube Collaboration

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS)
Fonds Wetenschappelijk Onderzoek-Vlaanderen
(FWO-Vlaanderen)
Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG)
Deutsches Elektronen-Synchrotron (DESY)
Knut and Alice Wallenberg Foundation
Swedish Polar Research Secretariat

The Swedish Research Council (VR)
University of Wisconsin Alumni Research
Foundation (WARF)
US National Science Foundation (NSF)

IceCube and DeepCore

Overhead View

DeepCore Geometry

- Eight special strings plus 12 nearby standard IceCube strings
 - 72 m interstring horizontal spacing (six with 42 m spacing)
 - 7 m DOM vertical spacing
 - ~40% higher Q.E. PMTs
 - ~5x higher effective photocathode density (but still only ~0.1% coverage)
 - DOMs: ~few ns timing, 0.25 p.e. threshold
- Roughly 30 MTon physical volume
 - ~ 10 GeV threshold
 - $\mathcal{O}(200k)$ atmospheric \mathbf{v}/yr

DeepCore: Effective Volume

$$V_{eff} = \frac{N_{acc}}{N_{gen}} V_{gen}$$

- ullet Many $oldsymbol{v}$ and $oldsymbol{\mu}$ events in IceCube will also trigger DeepCore
 - These events are rejected by the online veto algorithm
- Below ~ I 00 GeV, DeepCore improves V_{eff} significantly
- Final V_{eff} will be lower than shown once we require good event reconstruction

First Result from DeepCore

- Isolation of atmospheric ν -induced "cascade" sample $(\nu_e$ CC, ν_x NC)
- 1029 events:
 - 59% cascade
 - 41% ν_{μ} CC
- ~5x enrichment of cascade sig.: [casc/trk]_{veto} / [casc/trk]_{final} (without reconstructions)
- ~10⁸ downwardgoing cosmic ray muon rejection factor
- Average energy: ~200 GeV
- Paper being written
- Loosening cuts: see $\nu_{\mu} \rightarrow \nu_{\tau}$ a la SK?

First Result from DeepCore

Two candidate events

(Standard hit cleaning algorithm removed all noise hits in rest of detector.)

Second Result from DeepCore

- Looked for
 (expected)
 atmospheric v_µ
 oscillations at highest
 energies ever
- Oscillations seen
- Analysis was not designed to measure oscillation parameters
 - Ruled out nodisappearance hypothesis

Second Result from DeepCore

- Looked for (expected) atmospheric ν_μ oscillations at highest energies ever
- Oscillations seen
- Analysis was not designed to measure oscillation parameters
 - Ruled out nodisappearance hypothesis

$$\Delta \chi^2 = \chi^2_{\text{no osc}} - \chi^2_{\text{osc}} (= 33 \text{ in this analysis})$$

Beyond DeepCore

- DeepCore's early results show the feasibility and promise of doing fundamental neutrino physics at the 10 GeV energy scale
- •More interesting DeepCore results are in the works (\mathbf{v}_{τ} appearance, WIMP searches,...)
- What if we could go lower in energy?

The Next Step: PINGU

© [2011] The Pygos Grou

- Further increase sensor density
 - ~20 additional strings
 - Mostly IceCube technology plus some R&D modules
 - Include new low-E calibration devices
 - Aims:
 - Physics program at $E_{thr} \sim \text{few GeV}$
 - Neutrino hierarchy
 - Low mass WIMPs
 - R&D: Cherenkov ring segment reconstruction
 - Calibrate for light levels at E ~ I GeV
- Collaboration
 - IceCube, U.M.-Duluth, U. Erlangen, T.U.-Muenchen, NIKHEF, U. Wuerzburg

PINGU Effective Volumes

V_{eff} increased by ~8x at ~I GeV relative to DeepCore

Simulated PINGU Events

- 9.3 GeV neutrino
 - 4.4 GeV initial cascade, 4.9 GeV muon
- Physics hits only (no noise)

DeepCore Only

Simulated PINGU Events

- 9.3 GeV neutrino
 - 4.4 GeV initial cascade, 4.9 GeV muon
- Physics hits only (no noise)

DeepCore Only

DeepCore + PINGU

Neutrino Hierarchy

- "Sign" of the hierarchy can discriminate among unification theories
- Hierarchy can be determined as neutrinos pass through matter
 - v oscillation probability is enhanced if hierarchy is normal
 - $\overline{\mathbf{v}}$ oscillation probability is enhanced if hierarchy is inverted
 - and: v, \overline{v} have different cross sections

Neutrino Hierarchy

- "Sign" of the hierarchy can discriminate among unification theories
- Hierarchy can be determined as neutrinos pass through matter
 - ν oscillation probability is enhanced if hierarchy is <u>normal</u>
 - $\overline{\mathbf{v}}$ oscillation probability is enhanced if hierarchy is inverted
 - and: ∇ , ∇ have different cross sections

Neutrino Hierarchy

- Nova and T2K
 - Hierarchy– δ_{CP} degeneracy

Prakash, Raut & Sankar, ArXiv:1201.6485v2

 Can avoid degeneracy with atmospheric neutrinos & parametric resonances

Neutrino Hierarchy and Parametric Resonances

- Parametric resonances can occur as neutrinos cross regions of distinct density
 - Flavor transitions enhanced due to matter-induced modifications in oscillation phase
 - (MSW occurs through modifications in neutrino mixing <u>angle</u>)
 - If travel through periodically varying density, transition probabilities can add up and become large, but generally speaking need lots of periods
- Relevant Exception: For matter densities close to MSW resonance densities, can have parametric enhancement of oscillations with a very small number of periods
 - This is the case for Earth and neutrinos at ~5 GeV(!!) and
 - The character of the effect depends strongly on the hierarchy.

$\Delta m_{32}^2 = 2.35 \times 10^{-3}$ $\Delta m_{21}^2 = 7.6 \times 10^{-5}$ $\sin^2 \theta_{23} = 0.42$ $\sin^2 \theta_{12} = 0.312$ $\sin^2 \theta_{13} = 0.025$

Neutrino Hierarchy and Parametric Resonances

Impact of δ_{CP} negligible.

Study by IceCube collaboration with full detector simulation and reconstructions underway.

$\Delta m_{32}^2 = 2.35 \times 10^{-3}$ $\Delta m_{21}^2 = 7.6 \times 10^{-5}$ $\sin^2 \theta_{23} = 0.42$ $\sin^2 \theta_{12} = 0.312$ $\sin^2 \theta_{13} = 0.025$

Neutrino Hierarchy and Parametric Resonances

 $cos(\theta_z)$

Impact of δ_{CP} negligible.

Hierarchy Asymmetry (OE=3GeV OGP=15°)

Impact of smearing: summed significance drops to 10σ (no systematics), 7σ (5% uncorr. syst.), 4.5σ (10% uncorr. syst.).

Study by IceCube collaboration with full detector simulation and reconstructions underway.

Even Better: PINGU + v-Beam

- A neutrino beam can also exploit parametric resonances and
 - Can enable hierarchy determination with <u>much less</u> dependence on detector performance

Figures courtesy W. Winter

Doug Cowen NuFact 2012 20

PINGU + v-Beam

- Distances from labs to PINGU (and other experiments)
 - All baselines to PINGU cross Earth's outer core

Specific Example: FNAL to PINGU

- Parametric enhancement due to mantlecore-mantle profile can be exploited at convenient neutrino energies
 - (The beam angle is somewhat less convenient)
- Strong dependence on hierarchy
 - Since $\sigma(v) \sim 2\sigma(\overline{v})$:
 - $N_{ev}(NH)\sim 2N_{ev}(IH)$ at 2-10 GeV
 - $\delta_{CP} = 0$ looks similar (but not identical)

PINGU Effective Volume

- A few MTon fiducial mass for superbeam made by FNAL main injector protons at 120 GeV
 - makes lots of 2-5 GeV neutrinos
 - can use low intensity beam (shorter decay pipe)
- N.B.: At trigger level, without selection criteria or reconstruction inefficiencies
 - Ultimate effective (a.k.a. fiducial) volume will be smaller

Figure courtesy J. D. Koskinen and W. Winter. For more details, see Tang and Winter, JHEP 1202 (2012) 028.

The Hierarchy with PINGU + ν -Beam

- Assumptions:
 - 20% v_{μ} CC misID
 - No energy resolution
 - A counting experiment!
 - Include irreducible backgrounds
 - intrinsic beam, NC events, v_{τ}
 - signal & bkgd. systematics uncorrelated
- Conclusions:
 - 18σ effect (stat. only)
 - With particle ID, might be also sensitive to CP

NUMI beam at 10²¹ PoT

	Normal hier.	Inv. hierarchy
Signal	1560	54
Backgrounds:		
ν _e beam	39	59
Disapp./track mis-ID	511	750
v_{τ} appearance	3	4
Neutral currents	2479	2479
Total backgrounds	3032	3292
Total signal+backg.	4592	3346

Table courtesy W. Winter. See also Tang and Winter, JHEP 1202 (2012) 028.

PINGU: Possible Timeline

© [2011] The Pygos Group

Conclusions

- DeepCore has much promise at the 10-100 GeV scale
 - atmospheric neutrino oscillations
 - WIMP dark matter
 - southern sky sources, exotica,...
- PINGU could reach to a few GeV
 - can be built quickly, reliably and relatively cheaply
 - will improve on many DeepCore measurements, and perhaps measure hierarchy with atmospheric neutrinos
 - with beam, PINGU could measure hierarchy (and possibly also CP)
 - perform R&D for future lower energy detector ("MICA") with possible sensitivity to
 - proton decay
 - SN neutrinos ~annually
 - New members welcome!

The End

Backup slides follow

Choice of Beam

Want to study v_e - v_u oscillations

Beta beams:

$$\overline{n} \to p + e^- + \bar{\nu}_e \to \overline{\nu}_{\mu}$$

- ➤ In principle best choice for PINGU (need muon flavor ID only)
- Superbeams:

$$\overline{\pi^-} \rightarrow \mu^- + \bar{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$

- > Need (clean) electron flavor sample. Difficult?
- Neutrino factory:

$$\frac{\overline{\mu^-} \to e^- + \nu_\mu + \bar{\nu}_e \longrightarrow \overline{\nu}_\mu}{\longrightarrow \nu_\mu}$$

 \triangleright Need charge identification of μ^+ and μ^- (normally)

Slide courtesy W. Winter

CP Violation

- Dependence on δ_{CP}
- Requires good
 E resolution
 and particle ID
- Probably works only for NH
- Needs further study

Ice Properties

- Depth dependence of λ_{eff} and λ_{abs} from in situ LEDs
- Ice below 2100 m in DeepCore fiducial region very clear
 - $<\lambda_{eff}> \sim 47$ m, $<\lambda_{abs}> \sim 155$ m

• Constant temperature ~ -35C

Ice Properties

- Depth dependence of λ_{eff} and λ_{abs} from in situ LEDs
- Ice below 2100 m in DeepCore fiducial region very clear
 - $<\lambda_{eff}> \sim 47$ m, $<\lambda_{abs}> \sim 155$ m

• Constant temperature ~ -35C