Robustness of theoretical model predictions

Michael Ratz

NuFact, Virginia, July 27, 2012

Based on:

- T. Araki, T. Kobayashi, J. Kubo, S. Ramos–Sánchez, M.R. & P. Vaudrevange Nucl. Phys. B 805, 124–147 (2008)
- M.-C. Chen, M. Fallbacher, M.R. & C. Staudt, to appear

Origin of mass hierarchies and mixing

ilder Standard model: ${\it O}(20)$ physical quantities which seem unrelated

Origin of mass hierarchies and mixing

- ? Are there testable relations?

Origin of mass hierarchies and mixing

- ? Are there testable relations?
- Symmetries may relate the parameters and thus reduce their number

 ${\mathscr G}$ Grand Unified Theories : $G_{\rm SM} = {\rm SU}(3) \times {\rm SU}(2) \times {\rm U}(1) \subset G_{\rm GUT}$

 ${\mathscr F}$ Grand Unified Theories : $G_{SM} = SU(3) \times SU(2) \times U(1) \subset G_{GUT}$

$$\mathcal{G}_{\text{GUT}} \in \{\text{SU}(5), \text{SO}(10), \ldots\}$$

- ${\mathscr F}$ Grand Unified Theories : $G_{\rm SM}={
 m SU}(3) imes {
 m SU}(2) imes {
 m U}(1)\subset G_{\rm GUT}$
- $G_{GUT} \in \{SU(5), SO(10), \ldots\}$
- GUT symmetry relates quarks and leptons

- ${\mathscr F}$ Grand Unified Theories : $G_{\rm SM}={
 m SU}(3) imes {
 m SU}(2) imes {
 m U}(1)\subset G_{\rm GUT}$
- \mathcal{F} $G_{\text{GUT}} \in \{\text{SU}(5), \text{SO}(10), \ldots\}$
- GUT symmetry relates quarks and leptons
- Quarks & leptons reside in the same GUT multiplets

- ${\mathscr F}$ Grand Unified Theories : $G_{\rm SM}={
 m SU}(3) imes {
 m SU}(2) imes {
 m U}(1)\subset G_{\rm GUT}$
- $G_{GUT} \in \{SU(5), SO(10), ...\}$
- GUT symmetry relates quarks and leptons
- Quarks & leptons reside in the same GUT multiplets
- One set of Yukawa coupling for a given GUT multiplet
 intra-family relations

Family symmetries $G_{\rm F}$ relate different families \sim inter-family relations

- ilder Family symmetries $G_{
 m F}$ relate different families \sim inter-family relations
- Horizontal symmetries: two or three families get combined to multiplets

- ilder Family symmetries $G_{
 m F}$ relate different families \sim inter-family relations
- Horizontal symmetries: two or three families get combined to multiplets
- Further reduce the number of parameters

- ilder Family symmetries $G_{
 m F}$ relate different families \sim inter-family relations
- Horizontal symmetries: two or three families get combined to multiplets
- Further reduce the number of parameters
- May be continuous or discrete

- ilder Family symmetries $G_{
 m F}$ relate different families \sim inter-family relations
- Horizontal symmetries: two or three families get combined to multiplets
- Further reduce the number of parameters
- May be continuous or discrete
- Plethora of models

- ilder Family symmetries $G_{
 m F}$ relate different families \sim inter-family relations
- Horizontal symmetries: two or three families get combined to multiplets
- Further reduce the number of parameters
- May be continuous or discrete
- Plethora of models
- riangleq Attractive scheme: GUT symmetry imes family symmetry $G_{
 m F}$

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Non-Abelian discrete flavor symmetries

- \bigcirc Sorry, no citations on this slide \bigcirc
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- \bigcirc Sorry, no citations on this slide \bigcirc
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- \bigcirc Sorry, no citations on this slide \bigcirc
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- \bigcirc Sorry, no citations on this slide \bigcirc
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- \bigcirc Sorry, no citations on this slide \bigcirc
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 \bigcirc Sorry, no citations on this slide \bigcirc

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Family symmetries

Non-Abelian discrete flavor symmetries

- Sorry, no citations on this slide
- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

Sorry, no citations on this slide

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)
 - T' (double tetrahedron)

Family symmetries

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 - S_3 (equilateral triangle)

Family symmetries Non-Abelian discrete flavor symmetries

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)
 - T' (double tetrahedron)
 - S₃ (equilateral triangle)
 - S_4 (octahedron, cube)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 - S_3 (equilateral triangle)
 - S_4 (octahedron, cube)
 - A_5 (icosahedron, dodecahedron)

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 - S_3 (equilateral triangle)
 - S_4 (octahedron, cube)
 - A_5 (icosahedron, dodecahedron)
 - Q₄

- Recently strong model building activities based on discrete family symmetry groups:
 - A_4 (tetrahedron)

 - S_3 (equilateral triangle)
 - S_4 (octahedron, cube)
 - A_5 (icosahedron, dodecahedron)
 - Q₄
 - . . .

Interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, . . .)

- Interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, . . .)
- Symmetry breaking achieved through flavon VEVs

- Interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, . . .)
- Symmetry breaking achieved through flavon VEVs

Some sub-sector(s) may preserve different residual symmetry

- Interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, . . .)
- Symmetry breaking achieved through flavon VEVs

- Some sub-sector(s) may preserve different residual symmetry
- However, the full Lagrangean does not have these residual symmetries

- Interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, . . .)
- Symmetry breaking achieved through flavon VEVs

Some sub-sector(s) may preserve different residual symmetry

However, the full Lagrangean does not have these residual symmetries

Quantum corrections

- Interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, ...)
- Symmetry breaking achieved through flavon VEVs

- Some sub-sector(s) may preserve different residual symmetry
- However, the full Lagrangean does not have these residual symmetries
- Quantum corrections

question:

how robust are such predictions?

Altarelli and Feruglio (2005)

Superpotential couplings

$$\mathcal{W}_{v} = \frac{\lambda_{1}}{\Lambda \Lambda_{v}} \left\{ \left[\left(LH_{u} \right) \times \left(LH_{u} \right) \right]_{3} \times \Phi_{v} \right\}_{1} + \frac{\lambda_{2}}{\Lambda \Lambda_{v}} \left[\left(LH_{u} \right) \times \left(LH_{u} \right) \right]_{1} \xi$$

$$\begin{array}{c} \text{left-handed} \\ \text{lepton doublets} \\ \text{transform as } A_{4} \text{ triplet} \\ L = \left(L_{e}, L_{\mu}, L_{\tau} \right)^{T} \end{array} \right.$$

Altarelli and Feruglio (2005)

Superpotential couplings

$$\mathcal{W}_{v} = \frac{\lambda_{1}}{\Lambda \Lambda_{v}} \left\{ \left[\left(LH_{u} \right) \times \left(LH_{u} \right) \right]_{3} \times \Phi_{v} \right\}_{1} + \frac{\lambda_{2}}{\Lambda \Lambda_{v}} \left[\left(LH_{u} \right) \times \left(LH_{u} \right) \right]_{1} \xi$$

$$\text{cut-off} \qquad \text{see-saw} \qquad \text{triplet} \qquad \text{singlet} \qquad \text{flavon}$$

Attarelli and Feruglio (2005)

Superpotential couplings

$$\mathcal{W}_{v} = \frac{\lambda_{1}}{\Lambda \Lambda_{v}} \left\{ \left[\left(LH_{u} \right) \times \left(LH_{u} \right) \right]_{3} \times \Phi_{v} \right\}_{1} + \frac{\lambda_{2}}{\Lambda \Lambda_{v}} \left[\left(LH_{u} \right) \times \left(LH_{u} \right) \right]_{1} \xi$$

$$\begin{array}{c} \text{triplet} \\ \text{contraction} \end{array}$$

Altarelli and Feruglio (2005)

Superpotential couplings

$$\begin{split} \mathscr{W}_{v} &= \frac{\lambda_{1}}{\Lambda \Lambda_{v}} \left\{ \left[(LH_{u}) \times (LH_{u}) \right]_{3} \times \Phi_{v} \right\}_{1} + \frac{\lambda_{2}}{\Lambda \Lambda_{v}} \left[(LH_{u}) \times (LH_{u}) \right]_{1} \, \xi \\ \\ \mathscr{W}_{e} &= \frac{h_{e}}{\Lambda} \left(\Phi_{e} \times L \right)_{1} \, H_{d} \, e_{\mathrm{R}} + \frac{h_{\mu}}{\Lambda} \left(\Phi_{e} \times L \right)_{1} \, H_{d} \, \mu_{\mathrm{R}} + \frac{h_{\tau}}{\Lambda} \left(\Phi_{e} \times L \right)_{1''} \, H_{d} \, \tau_{\mathrm{R}} \\ \\ &\text{another triplet contraction} \end{split}$$

Altarelli and Feruglio (2005)

Superpotential couplings

$$\begin{split} \mathscr{W}_{v} &= \frac{\lambda_{1}}{\Lambda\Lambda_{v}}\left\{\left[(LH_{u})\times(LH_{u})\right]_{3}\times\Phi_{v}\right\}_{1} + \frac{\lambda_{2}}{\Lambda\Lambda_{v}}\left[(LH_{u})\times(LH_{u})\right]_{1}\,\xi \\ \mathscr{W}_{e} &= \frac{h_{e}}{\Lambda}\left(\Phi_{e}\times L\right)_{1}\,H_{d}\,e_{\mathrm{R}} + \frac{h_{\mu}}{\Lambda}\left(\Phi_{e}\times L\right)_{1'}\,H_{d}\,\mu_{\mathrm{R}} + \frac{h_{\tau}}{\Lambda}\left(\Phi_{e}\times L\right)_{1''}\,H_{d}\,\tau_{\mathrm{R}} \\ &\qquad \qquad \end{split}$$
 trivial singlet singlet

Altarelli and Feruglio (2005)

Superpotential couplings

$$\begin{split} \mathcal{W}_{v} &= \frac{\lambda_{1}}{\Lambda \Lambda_{v}} \left\{ \left[(LH_{u}) \times (LH_{u}) \right]_{3} \times \Phi_{v} \right\}_{1} + \frac{\lambda_{2}}{\Lambda \Lambda_{v}} \left[(LH_{u}) \times (LH_{u}) \right]_{1} \xi \\ \mathcal{W}_{e} &= \frac{h_{e}}{\Lambda} \left(\Phi_{e} \times L \right)_{1} H_{d} \, e_{\mathrm{R}} + \frac{h_{\mu}}{\Lambda} \left(\Phi_{e} \times L \right)_{1'} H_{d} \, \mu_{\mathrm{R}} + \frac{h_{\tau}}{\Lambda} \left(\Phi_{e} \times L \right)_{1''} H_{d} \, \tau_{\mathrm{R}} \end{split}$$

A₄ symmetry broken by VEVs of flavons

$$\langle \Phi_{v} \rangle = (v, v, v)$$

 $\langle \Phi_{e} \rangle = (v', 0, 0)$

Altarelli and Feruglio (2005)

Superpotential couplings

$$\begin{split} \mathcal{W}_{v} &= \frac{\lambda_{1}}{\Lambda \Lambda_{v}} \left\{ \left[(LH_{u}) \times (LH_{u}) \right]_{3} \times \Phi_{v} \right\}_{1} + \frac{\lambda_{2}}{\Lambda \Lambda_{v}} \left[(LH_{u}) \times (LH_{u}) \right]_{1} \xi \\ \mathcal{W}_{e} &= \frac{h_{e}}{\Lambda} \left(\Phi_{e} \times L \right)_{1} H_{d} \, e_{\mathrm{R}} + \frac{h_{\mu}}{\Lambda} \left(\Phi_{e} \times L \right)_{1'} H_{d} \, \mu_{\mathrm{R}} + \frac{h_{\tau}}{\Lambda} \left(\Phi_{e} \times L \right)_{1''} H_{d} \, \tau_{\mathrm{R}} \end{split}$$

A₄ symmetry broken by VEVs of flavons

$$\langle \Phi_{v} \rangle = (v, v, v)$$

 $\langle \Phi_{e} \rangle = (v', 0, 0)$

Tri-bi-maximal mixing (TBM)

Structure lepton masses

After inserting the flavon VEVs

Altarelli and Feruglio (2005)

Structure lepton masses

After inserting the flavon VEVs

Altarelli and Feruglio (2005)

Altarelli and Feruglio (2005)

After inserting the flavon VEVs

$$\begin{split} \mathscr{W}_{\nu} & = & \left(L_{e} H_{u}, L_{\mu} H_{u}, L_{\tau} H_{u} \right) \left(\begin{array}{ccc} a + 2d & -d & -d \\ -d & 2d & a - d \\ -d & a - d & 2d \end{array} \right) \left(\begin{array}{c} L_{e} H_{u} \\ L_{\mu} H_{u} \\ L_{\tau} H_{u} \end{array} \right) \\ \mathscr{W}_{e} & = & \left(L_{e}, L_{\mu}, L_{\tau} \right) \left(\begin{array}{c} y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & v_{\tau} \end{array} \right) \left(\begin{array}{c} e_{\mathrm{R}} \\ \mu_{\mathrm{R}} \\ \tau_{\mathrm{R}} \end{array} \right) H_{d} \end{aligned}$$

After inserting the electroweak VEVs

$$\mathscr{W}_{\scriptscriptstyle V} \stackrel{H_u o (0, v_u)^T}{\longrightarrow} \stackrel{v_u^2}{\longrightarrow} \left(\begin{matrix} v_e, v_\mu, v_\tau \end{matrix} \right) \left(egin{array}{ccc} a + 2d & -d & -d \\ -d & 2d & a -d \\ -d & a -d & 2d \end{array} \right) \left(egin{array}{c} v_e \\ v_\mu \\ v_\tau \end{array} \right)$$

Tri-bi-maximal mixing (TBM)

Harrison et al. (2002)

Structure of neutrino masses (in the basis in which the charged lepton masses are diagonal)

$$m_{\scriptscriptstyle Y} \propto \left(egin{array}{ccc} a+2d & -d & -d \ -d & 2d & a-d \ -d & a-d & 2d \end{array}
ight)$$

Tri-bi-maximal mixing (TBM)

Harrison et al. (2002)

Structure of neutrino masses (in the basis in which the charged lepton masses are diagonal)

$$m_{\scriptscriptstyle V} \propto \left(egin{array}{ccc} a+2d & -d & -d \ -d & 2d & a-d \ -d & a-d & 2d \end{array}
ight)$$

Tri-bi-maximal (P)MNS

mixing matrix
$$U_{(\mathrm{P)MNS}}^{\mathrm{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 • Mixing angles:
$$\begin{cases} \theta_{12} \simeq 35^{\circ} \\ \theta_{13} = 0 \\ \theta_{23} = 45^{\circ} \end{cases}$$
 • δ undefined for $\theta_{13} = 0$

Tri-bi-maximal mixing (TBM)

Harrison et al. (2002)

Structure of neutrino masses (in the basis in which the charged lepton masses are diagonal)

$$m_{\scriptscriptstyle V} \propto \left(egin{array}{ccc} a+2d & -d & -d \ -d & 2d & a-d \ -d & a-d & 2d \end{array}
ight)$$

Tri-bi-maximal (P)MNS

mixing matrix
$$U_{(\mathrm{P})\mathrm{MNS}}^{\mathrm{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 • Mixing angles:
$$\begin{cases} \theta_{12} \simeq 35^{\circ} \\ \theta_{13} = 0 \\ \theta_{23} = 45^{\circ} \end{cases}$$
 • δ undefined for $\theta_{13} = 0$

Unrealistic <a>¬`corrections' required

Many analyses: include high order terms in holomorphic superpotential

- Many analyses: include high order terms in holomorphic superpotential
- However: possible to construct models where higher order holomorphic superpotential terms vanish to all orders

- Many analyses: include high order terms in holomorphic superpotential
- However: possible to construct models where higher order holomorphic superpotential terms vanish to all orders
- Also popular: contribution from right-handed sector (may be determined by symmetries as well)

- Many analyses: include high order terms in holomorphic superpotential
- However: possible to construct models where higher order holomorphic superpotential terms vanish to all orders
- Also popular: contribution from right-handed sector (may be determined by symmetries as well)
- ? Conceptual question: how predictive are such models?

Superpotential: holomorphic, e.g.

$$\mathscr{W}_{v} = \frac{1}{2} \left(L H_{u} \right)^{T} \kappa_{v} L H_{u}$$

e.g. Leurer et al. (1994)

Superpotential: holomorphic, e.g.

$$\mathscr{W}_{v} = \frac{1}{2} \left(L H_{u} \right)^{T} \kappa_{v} L H_{u}$$

Kähler potential: non-holomorphic (real analytic)

$$K = K_{\text{canonical}} + \Delta K$$

e.g. Leurer et al. (1994)

Superpotential: holomorphic, e.g.

$$\mathscr{W}_{v} = \frac{1}{2} \left(L H_{u} \right)^{T} \kappa_{v} L H_{u}$$

Kähler potential: non-holomorphic (real analytic)

$$K = K_{\text{canonical}} + \Delta K$$

Canonical K\u00e4hler potential

$$K_{
m canonical} \supset \sum_f \left[\left(L_f
ight)^\dagger L_f + \left(R_f
ight)^\dagger R_f
ight]$$
 charged lepton singlets $R = (e_{
m R}, \mu_{
m R}, au_{
m R})$

e.g. Leurer et al. (1994)

Superpotential: holomorphic, e.g.

$$\mathscr{W}_{v} = \frac{1}{2} (LH_{u})^{T} \kappa_{v} LH_{u}$$

Kähler potential: non-holomorphic (real analytic)

$$K = K_{\text{canonical}} + \Delta K$$

Canonical K\u00e4hler potential

$$K_{ ext{canonical}} \supset \sum_{f} \left[\left(L_{f}
ight)^{\dagger} L_{f} + \left(R_{f}
ight)^{\dagger} R_{f} \right]$$

Correction

$$\Delta K = \sum_{f,g} \left[L_f^{\dagger} P_{fg} L_g + R_f^{\dagger} Q_{fg} R_g \right]$$

rightharpoonup Consider infinitesimal change parametrized by x

$$\Delta \mathcal{K}_L = -2xP$$

ilder Consider infinitesimal change parametrized by x

$$\Delta \mathcal{K}_L = -2xP$$

Rotate to canonically normalized fields

$$L' \rightarrow L \simeq (1-xP) L'$$

extstyle ext

$$\Delta \mathcal{K}_L = -2xP$$

Rotate to canonically normalized fields

$$L' \rightarrow L \simeq (1-xP) L'$$

Corrections to leads to a change

$$\mathcal{W}_{v} = \frac{1}{2} (L' \cdot H_{u})^{T} \kappa_{v} L' \cdot H_{u}$$

$$\simeq \frac{1}{2} [(\mathbb{1} + xP) L \cdot H_{u}]^{T} \kappa_{v} [(\mathbb{1} + xP) L \cdot H_{u}]$$

$$\simeq \frac{1}{2} (L \cdot H_{u})^{T} \kappa_{v} L \cdot H_{u} + x (L \cdot H_{u})^{T} (P^{T} \kappa_{v} + \kappa_{v} P) L \cdot H_{u}$$

extstyle ext

$$\Delta \mathcal{K}_L = -2xP$$

Rotate to canonically normalized fields

$$L' \rightarrow L \simeq (1-xP) L'$$

Corrections to leads to a change

$$\mathcal{W}_{\nu} \simeq \frac{1}{2} (L \cdot H_u)^T \kappa_{\nu} L \cdot H_u + x (L \cdot H_u)^T (P^T \kappa_{\nu} + \kappa_{\nu} P) L \cdot H_u$$

Differential equation

$$\frac{d}{dx}\kappa_{\nu}(x) = P^{T}\kappa_{\nu}(x) + \kappa_{\nu}(x)P$$

Kähler vs. RG corrections

Differential equation

$$\frac{\mathrm{d}}{\mathrm{d}x}\kappa_{\nu}(x) = P^{T}\kappa_{\nu}(x) + \kappa_{\nu}(x)P$$

Kähler vs. RG corrections

Differential equation

$$\frac{d}{dx}\kappa_{\nu}(x) = P^{T}\kappa_{\nu}(x) + \kappa_{\nu}(x)P$$

Same structure as RG evolution of neutrino mass operator

cf. Antusch et al. (2003)

Kähler vs. RG corrections

Differential equation

$$\frac{d}{dx}\kappa_{\nu}(x) = P^{T}\kappa_{\nu}(x) + \kappa_{\nu}(x)P$$

Same structure as RG evolution of neutrino mass operator

cf. Antusch et al. (2003)

 However, size of K\u00e4hler corrections can be substantially larger (no loop suppression)

Back to the A_4 example

Kähler potential may contain

Back to the A_4 example

Kähler potential may contain

$$\Delta K_{\Phi}^{
m linear} \supset \sum_{i=1}^2 rac{1}{\Lambda} \kappa_{\Phi,
m linear}^{(i)} L^{\dagger} (L\Phi)_{{f 3}_i} + {
m h.c.}$$

However, such terms may be forbidden by additional symmetries

"Quadratic" K\u00e4hler corrections

"Quadratic" K\u00e4hler corrections

$$\Delta K_{\Phi}^{\mathrm{quadratic}} \;\supset\; \frac{1}{\Lambda^2} \sum_{\boldsymbol{X}}^{6} \kappa_{\Phi,\mathrm{quadratic}}^{\boldsymbol{X}} \; \left(L\Phi\right)_{\boldsymbol{X}}^{\dagger} \left(L\Phi\right)_{\boldsymbol{X}} + \mathrm{h.c.}$$

 Such terms cannot be forbidden by any (conventional) symmetry

"Quadratic' K\u00e4hler corrections"

$$\Delta K_{\Phi}^{\mathrm{quadratic}} \;\supset\; \frac{1}{\Lambda^2} \sum_{\pmb{X}}^{6} \kappa_{\Phi,\mathrm{quadratic}}^{\pmb{X}} \; \left(L\Phi\right)_{\pmb{X}}^{\dagger} \left(L\Phi\right)_{\pmb{X}} + \mathrm{h.c.}$$

- Such terms cannot be forbidden by any (conventional) symmetry
- → Kähler corrections when flavon fields attain their VEVs

"Quadratic" K\u00e4hler corrections

$$\Delta K_{\Phi}^{\mathrm{quadratic}} \ \supset \ \frac{1}{\Lambda^2} \sum_{\boldsymbol{X}}^{6} \kappa_{\Phi,\mathrm{quadratic}}^{\boldsymbol{X}} \ \left(L\Phi \right)_{\boldsymbol{X}}^{\dagger} \left(L\Phi \right)_{\boldsymbol{X}} + \mathrm{h.c.}$$

- Such terms cannot be forbidden by any (conventional) symmetry
- → Kähler corrections when flavon fields attain their VEVs
- riangleq Additional parameters κ_{Φ}^{X} reduce the predictivity of the scheme

Linear independent flavon corrections

From $\langle \Phi_e \rangle$

$$P_{\rm II} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, P_{\rm II} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$P_{\rm III} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

rianglerightarrow From $\langle \Phi_{\nu} \rangle$

$$P_{\text{IV}} = \left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight) \, , \quad P_{\text{V}} = \left(egin{array}{ccc} 0 & \mathsf{i} & -\mathsf{i} \ -\mathsf{i} & 0 & \mathsf{i} \ \mathsf{i} & -\mathsf{i} & 0 \end{array}
ight)$$

- ilder Consider change induced by $P_{
 m V}$ correction
- rightharpoonup K Kähler metric of the form $\mathcal{K}_L = 1 2xP$ with

$$P = \frac{3\sqrt{3}}{2} \begin{pmatrix} 0 & \mathsf{i} & -\mathsf{i} \\ -\mathsf{i} & 0 & \mathsf{i} \\ \mathsf{i} & -\mathsf{i} & 0 \end{pmatrix}$$

- ilder Consider change induced by $P_{
 m V}$ correction
- rightharpoonup K Kähler metric of the form $\mathcal{K}_L = 1 2xP$ with

$$P = \frac{3\sqrt{3}}{2} \begin{pmatrix} 0 & \mathsf{i} & -\mathsf{i} \\ -\mathsf{i} & 0 & \mathsf{i} \\ \mathsf{i} & -\mathsf{i} & 0 \end{pmatrix}$$

The analytic formula evaluated at tri–bi–maximal mixing reads ($m_e \ll m_\mu \ll m_ au$)

$$\Delta\theta_{13} = \kappa_{\rm V} \cdot \frac{v^2}{\Lambda^2} \cdot 3\sqrt{\frac{3}{2}} \left(\frac{2m_1}{m_1 + m_3} + \frac{m_e^2}{m_\mu^2 - m_e^2} + \frac{m_e^2}{m_\tau^2 - m_e^2} \right)$$

- ilder Consider change induced by $P_{
 m V}$ correction
- rightharpoonup K Kähler metric of the form $\mathcal{K}_L = 1 2xP$ with

$$P = \frac{3\sqrt{3}}{2} \begin{pmatrix} 0 & \mathsf{i} & -\mathsf{i} \\ -\mathsf{i} & 0 & \mathsf{i} \\ \mathsf{i} & -\mathsf{i} & 0 \end{pmatrix}$$

extstyle ext

$$\Delta\theta_{13} = \kappa_{\rm V} \cdot \frac{v^2}{\Lambda^2} \cdot 3\sqrt{\frac{3}{2}} \left(\frac{2m_1}{m_1 + m_3} + \frac{m_e^2}{m_\mu^2 - m_e^2} + \frac{m_e^2}{m_\tau^2 - m_e^2} \right)$$

 $rightharpoonup \Delta heta_{13}$ for Kähler coefficient $\kappa_{
m V}=1$, $v/\Lambda=0.2$

For comparison: change of θ_{12}

 $\Rightarrow \Delta\theta_{12}$ for Kähler coefficient $\kappa_{\rm V}=1$, $v/\Lambda=0.2$

For comparison: change of θ_{23}

 $rightharpoonup \Delta heta_{23}$ for Kähler coefficient $\kappa_{
m V}=1$, $v/\Lambda=0.2$

e.g. Antusch et al. (2003)

e.g. Antusch et al. (2003)

- However, such corrections are loop-suppressed

e.g. Antusch et al. (2003)

- However, such corrections are loop-suppressed
- In addition, many of the proposed discrete flavor symmetries exhibit (discrete) anomalies

e.g. Antusch et al. (2003)

- However, such corrections are loop-suppressed
- In addition, many of the proposed discrete flavor symmetries exhibit (discrete) anomalies
- Quantum/instanton corrections to tree-level predictions

Araki (2007) ; Araki et al. (2008)

e.g. Antusch et al. (2003)

- extstyle ext
- However, such corrections are loop-suppressed
- In addition, many of the proposed discrete flavor symmetries exhibit (discrete) anomalies
- Quantum/instanton corrections to tree-level predictions

Araki (2007); Araki et al. (2008)

However, such corrections are exponentially suppressed

Only symmetries of the full Lagrangean can yield precise predictions

- Only symmetries of the full Lagrangean can yield precise predictions
- Predictions based on symmetries of subsectors receive potentially sizable corrections:
 - from renormalization group

- Only symmetries of the full Lagrangean can yield precise predictions
- Predictions based on symmetries of subsectors receive potentially sizable corrections:
 - from renormalization group
 ... well known and understood

- Only symmetries of the full Lagrangean can yield precise predictions
- Predictions based on symmetries of subsectors receive potentially sizable corrections:
 - from renormalization group
 ... well known and understood
 - from anomalies

- Only symmetries of the full Lagrangean can yield precise predictions
- Predictions based on symmetries of subsectors receive potentially sizable corrections:
 - from renormalization group
 ... well known and understood
 - from anomalies
 - ... harder to quantify and often ignored but exponentially suppressed

- Only symmetries of the full Lagrangean can yield precise predictions
- Predictions based on symmetries of subsectors receive potentially sizable corrections:
 - from renormalization group
 ... well known and understood
 - from anomalies
 ...harder to quantify and often ignored but exponentially suppressed
 - from higher order terms in the K\u00e4hler potential which involve the flavons

- Only symmetries of the full Lagrangean can yield precise predictions
- Predictions based on symmetries of subsectors receive potentially sizable corrections:
 - from renormalization group
 ... well known and understood
 - from anomalies
 ...harder to quantify and often ignored but exponentially suppressed
 - from higher order terms in the K\u00e4hler potential which involve the flavons
 - ... expected to dominate

Kähler corrections induced by flavon VEVs

- Kähler corrections induced by flavon VEVs
- Kähler corrections governed by 'new' parameters that are not fixed by the flavor symmetries

- Kähler corrections induced by flavon VEVs
- Kähler corrections governed by 'new' parameters that are not fixed by the flavor symmetries
- While similar in structure to RG corrections, K\u00e4hler corrections are generally along different directions than RG

- Kähler corrections induced by flavon VEVs
- Kähler corrections governed by 'new' parameters that are not fixed by the flavor symmetries
- While similar in structure to RG corrections, K\u00e4hler corrections are generally along different directions than RG
- Kähler corrections may induce non-zero CP phases

- Kähler corrections induced by flavon VEVs
- Kähler corrections governed by 'new' parameters that are not fixed by the flavor symmetries
- While similar in structure to RG corrections, K\u00e4hler corrections are generally along different directions than RG
- Kähler corrections may induce non-zero CP phases
- Analytical understanding possible

- Kähler corrections induced by flavon VEVs
- Kähler corrections governed by 'new' parameters that are not fixed by the flavor symmetries
- While similar in structure to RG corrections, K\u00e4hler corrections are generally along different directions than RG
- Kähler corrections may induce non-zero CP phases
- Analytical understanding possible
- ilder Example: realistic $heta_{13}$ from tri-bi-maximal mixing scheme

Large uncertainties in a large class of popular constructions

- Large uncertainties in a large class of popular constructions
- Experimental accuracy far ahead of theoretical precision for many models

- Large uncertainties in a large class of popular constructions
- Experimental accuracy far ahead of theoretical precision for many models
- Even for most of the bottom-up field-theoretical models an understanding of the Kähler potential appears mandatory in order to achieve a precision in the model predictions that can compete with experiments

- Large uncertainties in a large class of popular constructions
- Experimental accuracy far ahead of theoretical precision for many models
- Even for most of the bottom-up field-theoretical models an understanding of the Kähler potential appears mandatory in order to achieve a precision in the model predictions that can compete with experiments
- In certain schemes (such as string compactifications) one may compute the coefficients of the higher order terms in the K\u00e4hler potential

- Large uncertainties in a large class of popular constructions
- Experimental accuracy far ahead of theoretical precision for many models
- Even for most of the bottom-up field-theoretical models an understanding of the Kähler potential appears mandatory in order to achieve a precision in the model predictions that can compete with experiments
- In certain schemes (such as string compactifications) one may compute the coefficients of the higher order terms in the K\u00e4hler potential
- More effort both on theoretical and experimental side required to attack the flavor problem

Thank you very much!

References I

- Guido Altarelli and Ferruccio Feruglio. Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions. *Nucl.Phys.*, B720:64–88, 2005. doi: 10.1016/j.nuclphysb.2005.05.005.
- Stefan Antusch, Joern Kersten, Manfred Lindner, and Michael Ratz. Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences. *Nucl.Phys.*, B674:401–433, 2003. doi: 10.1016/j.nuclphysb.2003.09.050.
- Takeshi Araki. Anomalies of discrete symmetries and gauge coupling unification. *Prog. Theor. Phys.*, 117:1119–1138, 2007.
- Takeshi Araki et al. (Non-)Abelian discrete anomalies. *Nucl. Phys.*, B805:124–147, 2008. doi: 10.1016/j.nuclphysb.2008.07.005.

References II

P.F. Harrison, D.H. Perkins, and W.G. Scott. Tri-bimaximal mixing and the neutrino oscillation data. *Phys.Lett.*, B530:167, 2002. doi: 10.1016/S0370-2693(02)01336-9.

Miriam Leurer, Yosef Nir, and Nathan Seiberg. Mass matrix models: The Sequel. *Nucl. Phys.*, B420:468–504, 1994.