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e Accelerators
e FFAGs
o Introduction
o Scaling and non-scaling FFAGs
o Serpentine acceleration
o Muon acceleration

« EMMA accelerator: goals and parameters
e« EMMA results

o Measurement of acceleration

o Other measurements

« EMMA plans
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BROGIAREN, Types of Accelerators

e Linacs
o Very rapid acceleration: magnet fields fixed
o [Large acceptance
o Very expensive: only one pass through RF
e Recirculating linear accelerators (RLAS)

o Make multiple passes through linac
o Arcs return beam to linac

e Different arc for each energy

e Arc switchyard limits number of passes

e Adjust arc length to ensure RF synchronization
o Small magnet apertures

e But lots of arc length
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BROGKARIEN Types of Accelerators
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BROGIAREN, Types of Accelerators

e Synchrotrons
o Ramp magnet fields in proportion to momentum
o Accelerate slowly, limited by magnet ramp rate
o Very efficient, allow may passes through RF

o Small magnet apertures
o Vary RF frequency with time of flight

e Sufficient time due to slow acceleration

e Cyclotrons
o Fixed magnetic fields, allow rapid acceleration
e Beam moves across aperture during acceleration

o Only work well for nonrelativistic energies
o Large magnet apertures
o Isochronous: fixed RF frequency
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"« Fixed Field Alternating Gradient accelerators

e Magnet fields fixed: beam moves across aperture
o Acceleration rate limited only by
e Installed RF voltage
e RF frequency sweep rate to keep beam synchronized to RF

e In contrast to cyclotron
o Alternating gradient focusing keeps apertures small
o Works at relativistic energies
o Time of flight varies with energy
e Useful when you want
o Rapid acceleration
o High efficiency by making many RF passes
o Apertures that aren't too large
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NATIONAL LABORATORY Scaling FFAGS

e FFAGs originated 1n the 1950s
e Midplane field is B,(8)(r/ry)"
o Alternating gradient from B,(6) changing sign
e Closed orbit properties
o Tunes are constant
o Constant momentum compaction of 1/(k + 1)
o Orbits geometrically similar, sizes scaling as p
e Scaling FFAGs designed & built in Japan recently
o NuFact] neutrino factory design (2001)
o Three-ring proton accelerator for ADS (KART, 2008)
o ERIT neutron production ring (2008)
o PRISM muon phase rotator

1/(k+1)
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BROOKARVEN Non-Scaling FFAGs

e Desire to improve some FFAG properties
o Physical magnet aperture
o Dynamic aperture
o Longitudinal beam dynamics

e Break the symmetries that give “scaling”:
o Tune depends on energy

e Early 1deas 1n this direction
o Use linear magnets (Mills & Johnstone, 1997)
e Large dynamic aperture
o Flexible momentum compaction lattice with strong
sextupoles (Trbojevic, Courant, & Garren 1999)
e Very small physical aperture
e Smaller dynamic aperture
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BROOKHELUEN Serpentine Acceleration én/’[
e Non-scaling FFAGs try to reduce magnet aperture
o Reduced dispersion, thus small momentum compaction
o Relativistic: 1sochronous at one point in energy range
e Time of flight parabolic-like function of energy
o Synchronized to fixed-frequency RF at two energies

o Cross RF crest three times during acceleration
o S-shaped path 1n longitudinal phase space: serpentine
acceleration
e Minimum voltage for channel to open
e More voltage widens central channel

o Extends time that beam 1s synchronized to RF
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e Rapid acceleration required
o High average gradient: high (2004+ MHz) frequency RF
o No time to shift RF frequency
o NoO time to ramp magnets

e More passes through RF for efficiency

e RLLAs have limited number of turns: switchyard

e Linear non-scaling FFAGs good at higher energies
o FFAG to get many passes 1in same beamline
e Serpentine acceleration helps this
o Non-scaling to keep magnet costs down
e Time of flight range less than scaling: more turns
o Linear non-scaling to get large dynamic aperture
e Very important for neutrino factory
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e Before EMMA, a non-scaling FFAG had never been

built
e Study beam dynamics 1n non-scaling FFAGs
o Resonance crossing
o Serpentine acceleration
e Study parametric behavior
o Which major resonances are crossed
o Shape of time of flight curve
o Acceleration rate
o RF synchronization energies
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BROGIAEN, EMMA Design

"« Accelerate electrons from 10 to 20 MeV
o Inject and extract anywhere in this range

e 16.6 m circumference

42 1dentical doublets of combined-function magnets
o Offset quadrupoles, remotely movable
e Shifters can be used for closed orbit correction

o Independently vary dipole and quadrupole components

e 19 1.3 GHz RF cavities
o Around 2 MV of RF voltage
o >6 MHz tuning range

e Injection and extraction each with septum and two
kickers
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BROGIAEN, EMMA Design

"« Extensive diagnostics
o 2 sets of BPMs 1n (almost) every cell

e Turn-by-turn data
e One set in same spot in each cell
o Closed orbit distortion
o Tune measurements when lack many turns

e Pairs of BPMs across drifts
e Time of flight measurement
o Wall current monitor (new!)
e Current
e Time of flight
o 2 YAG screens

e Finding the beam at injection
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« Measurements at fixed energy
o Horizontal and vertical tunes
« Fourier analysis of a sequence of cells
o Time of flight
e See expected parabolic shape
o Orbit position
e Large orbit distortion observed: +5 mm, expected +1 mm
o Horizontally, septum stray field a major contributor
o Horizontal and vertical distortions similar scale
e Measured about 6 MV of acceleration
o Energy measured indirectly via tunes or orbit position
e Consistent whichever we use
 Verified (roughly) energy gain with extracted beam
o Use time of flight curve to find serpentine channel
« Consistent with acceleration seen
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e Closed orbit distortion our primary problem
o Limits acceleration range
o May be preventing injection at lower energies

e Have 84 horizontal and 16 vertical correctors
o Horizontal correctors are moving main magnets

e Correct using response matrix from simulation
o Tune simulated lattice to measured tune
e Difficult to get precise tune measurements: tune signal
decoheres from chromaticity

o Including F quadrupole displacements didn't work
o Reduced RMS distortion from 3.0 mm to 1.3 mm

e Next step: measure response matrix, use to correct
o Did trial run for one F quad
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SRODMAIEN, Closed Orbit Correction
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e Non-scaling FFAG crosses many integer resonances

e Look at individual resonance crossing

e Inject in stable RF bucket
o Control bucket energy with RF frequency

e Cross many times with oscillation

e Vary rate by varying position in RF bucket

e No noticeable growth when crossing rapidly (near
stable fixed point)

e When crossing slowly near unstable fixed point,
rapid beam growth and loss
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BROGIAREN, Poincare Maps

"o Pairs of BPMs across longest drift (95 mm apart)
e Drifts nearly field-free: field clamps on magnets
e Give momentum and position: phase space

e Allow computation of amplitude
e Apparent decrease of amplitude
o Decoherence due to energy spread and chromaticity
e Measure amplitude-dependent effects
o Time of flight dependence on transverse amplitude
o Dynamic aperture

e Extract energy distribution (C. Edmonds)
e Note shift in centroid
o Maybe from BPM mapping of large distribution
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DRODKHAUEN I _essons for Muon FFAGs

"« Ensure sufficiently low magnet-to-magnet field
profile variation

e Injection and extraction are challenging
e Extensive diagnostics essential

o Good timing

o At least one BPM per cell

o Extra BPMs 1n injection/extraction

e Precise magnet modeling and integration into
simulations are necessary

e Individual control of field components
(dipole/quadrupole) important
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BROOKHIATEN Future Directions

"« Related to neutrino factory acceleration
o Optimally correct closed orbit

o Extend acceleration range

o Probe important beam dynamics effects
e Parametric dependence of serpentine acceleration
e Time of flight vs. transverse amplitude
e Transverse dynamic aperture

o Study behavior with different lattice configurations
e Other areas of interest

o Model phase rotation in PRISM (J. Pasternak er al.)

o Space charge effects

o Slow acceleration: rate limit

o Many others
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BROOKHFIVEN

Concluding Thoughts

e Non-scaling FFAGs are a new type of accelerator
which may benefit many applications, the clearest
benefit being for muon acceleration

e We have built and operated the first non-scaling
FFAG

e We have successfully accelerated beam

e We still have an extensive program to fully explore
the behavior of this type of machine
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