

Results from the EMMA Experiment

J. Scott Berg
Brookhaven National Laboratory
NuFact 2012
July 27, 2012

Outline

- Accelerators
- FFAGs
 - Introduction
 - Scaling and non-scaling FFAGs
 - Serpentine acceleration
 - Muon acceleration
- EMMA accelerator: goals and parameters
- EMMA results
 - Measurement of acceleration
 - Other measurements
- EMMA plans

Types of Accelerators

Linacs

- Very rapid acceleration: magnet fields fixed
- Large acceptance
- Very expensive: only one pass through RF
- Recirculating linear accelerators (RLAs)
 - Make multiple passes through linac
 - Arcs return beam to linac
 - Different arc for each energy
 - Arc switchyard limits number of passes
 - Adjust arc length to ensure RF synchronization
 - Small magnet apertures
 - But lots of arc length

Types of Accelerators

Types of Accelerators

Synchrotrons

- Ramp magnet fields in proportion to momentum
- Accelerate slowly, limited by magnet ramp rate
- Very efficient, allow may passes through RF
- Small magnet apertures
- Vary RF frequency with time of flight
 - Sufficient time due to slow acceleration

Cyclotrons

- Fixed magnetic fields, allow rapid acceleration
 - Beam moves across aperture during acceleration
- Only work well for nonrelativistic energies
- Large magnet apertures
- Isochronous: fixed RF frequency

Introduction to FFAGs

- Fixed Field Alternating Gradient accelerators
- Magnet fields fixed: beam moves across aperture
 - Acceleration rate limited only by
 - Installed RF voltage
 - RF frequency sweep rate to keep beam synchronized to RF
- In contrast to cyclotron
 - Alternating gradient focusing keeps apertures small
 - Works at relativistic energies
 - Time of flight varies with energy
- Useful when you want
 - Rapid acceleration
 - High efficiency by making many RF passes
 - Apertures that aren't too large

Scaling FFAGs

- FFAGs originated in the 1950s
- Midplane field is $B_0(\theta)(r/r_0)^k$
 - Alternating gradient from $B_0(\theta)$ changing sign
- Closed orbit properties
 - Tunes are constant
 - Constant momentum compaction of 1/(k+1)
 - Orbits geometrically similar, sizes scaling as $p^{1/(k+1)}$
- Scaling FFAGs designed & built in Japan recently
 - NuFactJ neutrino factory design (2001)
 - Three-ring proton accelerator for ADS (KART, 2008)
 - ERIT neutron production ring (2008)
 - PRISM muon phase rotator

Non-Scaling FFAGs

- Desire to improve some FFAG properties
 - Physical magnet aperture
 - Dynamic aperture
 - Longitudinal beam dynamics
- Break the symmetries that give "scaling":
 - Tune depends on energy
- Early ideas in this direction
 - Use linear magnets (Mills & Johnstone, 1997)
 - Large dynamic aperture
 - Flexible momentum compaction lattice with strong sextupoles (Trbojevic, Courant, & Garren 1999)
 - Very small physical aperture
 - Smaller dynamic aperture

Serpentine Acceleration

- Non-scaling FFAGs try to reduce magnet aperture
 - Reduced dispersion, thus small momentum compaction
 - Relativistic: isochronous at one point in energy range
- Time of flight parabolic-like function of energy
 - Synchronized to fixed-frequency RF at two energies
 - Cross RF crest three times during acceleration
 - S-shaped path in longitudinal phase space: serpentine acceleration
 - Minimum voltage for channel to open
 - More voltage widens central channel
 - Extends time that beam is synchronized to RF

Serpentine Acceleration

Muon Acceleration

- Rapid acceleration required
 - High average gradient: high (200+ MHz) frequency RF
 - No time to shift RF frequency
 - No time to ramp magnets
- More passes through RF for efficiency
- RLAs have limited number of turns: switchyard
- Linear non-scaling FFAGs good at higher energies
 - FFAG to get many passes in same beamline
 - Serpentine acceleration helps this
 - Non-scaling to keep magnet costs down
 - Time of flight range less than scaling: more turns
 - Linear non-scaling to get large dynamic aperture
 - Very important for neutrino factory

EMMA Goals

- Before EMMA, a non-scaling FFAG had never been built
- Study beam dynamics in non-scaling FFAGs
 - Resonance crossing
 - Serpentine acceleration
- Study parametric behavior
 - Which major resonances are crossed
 - Shape of time of flight curve
 - Acceleration rate
 - RF synchronization energies

EMMA Goals

EMMA Design

- Accelerate electrons from 10 to 20 MeV
 - Inject and extract anywhere in this range
- 16.6 m circumference
- 42 identical doublets of combined-function magnets
 - Offset quadrupoles, remotely movable
 - Shifters can be used for closed orbit correction
 - Independently vary dipole and quadrupole components
- 19 1.3 GHz RF cavities
 - Around 2 MV of RF voltage
 - >6 MHz tuning range
- Injection and extraction each with septum and two kickers

EMMA Design

- Extensive diagnostics
 - 2 sets of BPMs in (almost) every cell
 - Turn-by-turn data
 - One set in same spot in each cell
 - Closed orbit distortion
 - Tune measurements when lack many turns
 - Pairs of BPMs across drifts
 - Time of flight measurement
 - Wall current monitor (new!)
 - Current
 - Time of flight
 - 2 YAG screens
 - Finding the beam at injection

Results from Last Year

- Measurements at fixed energy
 - Horizontal and vertical tunes
 - Fourier analysis of a sequence of cells
 - Time of flight
 - See expected parabolic shape
 - Orbit position
 - Large orbit distortion observed: ±5 mm, expected ±1 mm
 - Horizontally, septum stray field a major contributor
 - Horizontal and vertical distortions similar scale
- Measured about 6 MV of acceleration
 - Energy measured indirectly via tunes or orbit position
 - Consistent whichever we use
 - Verified (roughly) energy gain with extracted beam
 - Use time of flight curve to find serpentine channel
 - Consistent with acceleration seen

Results from Last Year

Horizontal Position

Horizontal Tune

Vertical Tune

S. Machida *et al.*, Nature Phys. **8** (2012) 243

Closed Orbit Correction

- Closed orbit distortion our primary problem
 - Limits acceleration range
 - May be preventing injection at lower energies
- Have 84 horizontal and 16 vertical correctors
 - Horizontal correctors are moving main magnets
- Correct using response matrix from simulation
 - Tune simulated lattice to measured tune
 - Difficult to get precise tune measurements: tune signal decoheres from chromaticity
 - Including F quadrupole displacements didn't work
 - Reduced RMS distortion from 3.0 mm to 1.3 mm
- Next step: measure response matrix, use to correct
 - Did trial run for one F quad

Closed Orbit Correction

D. J. Kelliher et al., IPAC12, 1455.

Resonance Crossing

- Non-scaling FFAG crosses many integer resonances
- Look at individual resonance crossing
- Inject in stable RF bucket
 - Control bucket energy with RF frequency
- Cross many times with oscillation
- Vary rate by varying position in RF bucket
- No noticeable growth when crossing rapidly (near stable fixed point)
- When crossing slowly near unstable fixed point, rapid beam growth and loss

Resonance Crossing

Poincare Maps

- Pairs of BPMs across longest drift (95 mm apart)
- Drifts nearly field-free: field clamps on magnets
- Give momentum and position: phase space
- Allow computation of amplitude
- Apparent decrease of amplitude
 - Decoherence due to energy spread and chromaticity
- Measure amplitude-dependent effects
 - Time of flight dependence on transverse amplitude
 - Dynamic aperture
- Extract energy distribution (C. Edmonds)
- Note shift in centroid
 - Maybe from BPM mapping of large distribution

Poincare Maps

Lessons for Muon FFAGs

- Ensure sufficiently low magnet-to-magnet field profile variation
- Injection and extraction are challenging
- Extensive diagnostics essential
 - Good timing
 - At least one BPM per cell
 - Extra BPMs in injection/extraction
- Precise magnet modeling and integration into simulations are necessary
- Individual control of field components (dipole/quadrupole) important

Future Directions

- Related to neutrino factory acceleration
 - Optimally correct closed orbit
 - Extend acceleration range
 - Probe important beam dynamics effects
 - Parametric dependence of serpentine acceleration
 - Time of flight vs. transverse amplitude
 - Transverse dynamic aperture
 - Study behavior with different lattice configurations
- Other areas of interest
 - Model phase rotation in PRISM (J. Pasternak *et al.*)
 - Space charge effects
 - Slow acceleration: rate limit
 - Many others

Concluding Thoughts

- Non-scaling FFAGs are a new type of accelerator which may benefit many applications, the clearest benefit being for muon acceleration
- We have built and operated the first non-scaling FFAG
- We have successfully accelerated beam
- We still have an extensive program to fully explore the behavior of this type of machine